Liebe Leserinnen und Leser von ADxS.org, bitte verzeihen Sie die Störung.

ADxS.org benötigt in 2022 rund 12.500 €. In 2021 erhielten wir Zuwendungen Dritter von 5.043,56 €. Leider spenden 99,7 % unserer Leser nicht. Wenn alle, die diese Bitte lesen, einen kleinen Beitrag leisten, wäre unsere Spendenkampagne für das Jahr 2022 nach einigen Tagen vorbei. Dieser Spendenaufruf wird 3.000 Mal in der Woche angezeigt, jedoch nur 10 Menschen spenden. Wenn Sie ADxS.org nützlich finden, nehmen Sie sich bitte eine Minute Zeit und unterstützen Sie ADxS.org mit Ihrer Spende. Vielen Dank!

Seit dem 01.06.2021 wird ADxS.org durch den gemeinnützigen ADxS e.V. getragen. Spenden an den ADxS e.V. sind steuerlich absetzbar (bis 100 € genügt der Überweisungsträger als Spendenquittung).

100€ von 12.500€ - Stand 08.01.2022
0%
Header Image
Neurotransmitter bei Stress

Inhaltsverzeichnis

Inhaltsverzeichnis ausklappen
Inhaltsverzeichnis einklappen
Das Projekt ADxS.org
Symptome
Folgen
Neurologische Aspekte
CRH
Behandlung und Therapie
Änderungshistorie
Suche

Neurotransmitter bei Stress

Neurotransmitter sind bei der Entstehung und Vermittlung von Stress innerhalb des Körpers wichtige Faktoren.

1. Stress-/AD(H)S-Symptome durch zu hohe oder zu niedrige Katecholaminspiegel

1.1. Optimaler Neurotransmitterspiegel = optimale Informationsübertragung

Eine optimale Informationsübertragung zwischen Gehirnsynapsen erfordert einen optimalen Pegel der jeweiligen Neurotransmitter. Ein zu geringer Neurotransmitterspiegel führt zu einer nahezu identischen Signalübertragungsstörung wie ein zu hoher Neurotransmitterspiegel (Reversed-U-Theorie).1234356789101112

Für eine optimale Signalübertragung benötigen die Pyramidenzellen des PFC eine moderate Stimulation der D1-Rezeptoren durch Dopamin und der α2A-Rezeptoren durch Noradrenalin. Dopaminbindung an D1-Rezeptoren verringert das Rauschen des Eingangssignals im PFC, indem Signale von nicht benötigten externen Quellen reduziert werden, während Noradrenalin über α2A-Rezeptoren das eingehende Signal externer Quellen verstärkt.13

Erhöhte DA- und NE-Level bewirken eine zusätzliche Belegung von Rezeptoren, was die Aufmerksamkeit verringert. Verringerte DA- und NE-Level führen dazu, dass alle eingehenden Signale identisch sind, was die Konzentration auf einzelne Aufgaben verringert.

Ein zu hoher wie ein zu niedriger DA- und/oder NE-Spiegel führen also zu sehr ähnlichen Symptomen aufgrund einer nicht optimalen Signalübertragung im PFC.14

Daher kann ein Medikament, das den Neurotransmitterpegel erhöht und das in niedriger Dosierung gut wirkt, bei höherer Dosierung eben diejenigen Symptome hervorrufen, die es in niedriger Dosierung gerade vermeidet. Aus diesem Grunde ist es ein Kunstfehler, Medikamente bei AD(H)S mit der angestrebten Zieldosierung zu beginnen oder diese schnell einzudosieren. Die Titrationsphase (Einmedikamentierungsphase) sollte besser besonders langsam und niedrig beginnen als zu schnell und zu hoch.

Beispiel:

Erwachsene Nichtraucher wurden in einer kleinen Studie mit Nikotinpflastern behandelt.
Bei denjenigen mit schlechter Konzentrationsfähigkeit verbesserte sich diese, bei denjenigen mit guter Konzentrationsfähigkeit verschlechterte sich diese.15
Nikotin wirkt ähnlich wie Stimulanzien, nur cholinerg anstatt dopaminerg; es erhöht also den Pegel des Neurotransmitters Acetylcholin. Ein zu niedriger Acetylcholinspiegel verursacht Konzentrationsschwierigkeiten.
Nikotinpflaster sind bei AD(H)S möglicherweise wirksame Medikamente.
Nikotin bei AD(H)S

1.2. Stress-/AD(H)S-Symptome durch erhöhte Katecholaminspiegel (DA / NE)

1.2.1. Akuter Stress erhöht Dopaminspiegel im mPFC, Striatum und Nucleus accumbens

Stress erhöht bei gesunden Ratten den Dopaminspiegel

  • im mPFC um 95%
  • im Nucleus accumbens um 39%
  • im Striatum um 25%1617

Bei Stress handelt es sich um eine phasische (also kurzfristige) Dopaminerhöhung.18

1.2.2. Leichter Stress = leichte NE-/DA-Erhöhung = erhöhte kognitive Leistungsfähigkeit

Die leichten Stressreaktionen des vegetativen Nervensystems werden durch Acetylcholin und Adrenalin vermittelt.

Im zentralen Nervensystem (Gehirn) bewirken leichte Erhöhungen des Dopamin- und/oder Noradrenalinspiegels eine erhöhte Leistungsfähigkeit des PFC (ausser bei Trägern des COMT Met158Met Genpolymorphismus).1920212223

Wird dadurch das Problem nicht gelöst (der Stressor nicht beseitigt), steigen Dopamin und Noradrenalinspiegel weiter an. Hohe Noradrenalinspiegel aktivieren die HPA-Achse (Stressachse), die so erst bei schwer bewältigbarem Stress in Aktion tritt.

1.2.3. Starker Stress = starke NE-/DA- und Cortisol-Erhöhung = verringerte kognitive Leistungsfähigkeit

1.2.3.1. Hoher Noradrenalinspiegel blockiert PFC

Im Gegensatz zu leichten Noradrenalinerhöhungen, die den PFC anregen, schalten starke Erhöhungen von Noradrenalin den PFC ab und verlagern die Verhaltenssteuerung in posteriore Gehirnregionen.24252627282930

Dies dürfte dem von Dietrich31 unter Bezugnahme auf Mobbs et al32 als Posteriorisierung beschriebenen Effekt entsprechen.

1.2.3.2. Hoher Cortisolspiegel blockiert PFC

Hohe Cortisolspiegel, wie sie insbesondere bei ADS und SCT bei akutem Stress entstehen, stimulieren im PFC zusätzlich die Noradrenalin-α1-Rezeptoren, über die bereits Noradrenalin die Funktion von PFC und Arbeitsgedächtnis beeinträchtigt. Die gleichzeitige Adressierung dieser Rezeptoren durch Noradrenalin und Cortisol verstärkt diesen Effekt.33
Daneben wird die Verlagerung der Steuerung von den kognitiven Gehirnregionen (PFC und Hippocampus) auf eher verhaltensorientierten Gehirnregionen (wie Aymgdala und dorsales Striatum) durch die cortisolergen Mineralocorticoidrezeptoren (MR) und Glucocorticoidrezeptoren (GR) reguliert.34

Cortisol, das als Stressreaktion bei ADS und vermutlich auch SCT häufig erhöht ist, blockiert über die Glucocorticoidrezeptoren (GR) im PFC und Hippocampus den Abruf des deklaratorischen (expliziten) Gedächtnisses. Das nondeklarative (implizite, intuitive) Gedächtnis wird nicht beeinträchtigt.35 Dies könnte die häufig mit ADS in Verbindung gebrachten Denk- und Erinnerungsblockaden erklären und ebenso, warum ADS-Betroffene häufig eine höhere Intuition zu besitzen sollen. Dass die Verlagerung des Schwerpunkts der Gedächtnisfähigkeiten zu einer Verschiebung der Problemlösungsmuster führt, wäre jedenfalls naheliegend. Trappmann-Korr nennt dies die “holistische” Wahrnehmung. Unsere eigenen Datenerhebungen zeigen jedoch bislang, dass eine Selbsteinschätzung, intuitiv zu sein, bei 69% der ADHS-Betroffenen und lediglich bei 60% der ADS-Betroffenen vorliegt. (n = 1.100, Stand August 2019)
Wahrscheinlich wird nicht nur der Abruf (Erinnern) sondern auch die Aneignung (Lernen) und die Gedächtniskonsolidierung (Langzeitabspeicherung) von Informationen beeinträchtigt. Konsolidierung erfolgt besonders während des Schlafes in der ersten Nachthälfte, der von besonders niedrigen basalen Cortisolspiegeln geprägt ist. Konsolidierung kann dabei durch niedrige Cortisolgabe unterbunden werden.35

Cortisolstressantwort korreliert nicht mit Denkblockaden

Unsere Hypothese, dass bei ADHS Denkblockaden seltener auftreten würden als bei ADS, wurde durch die Auswertung von rund 1700 Datensätzen des ADxS-Online-Symptomtests nicht bestätigt. Denkblockaden traten nach unseren Daten bei ADHS wie bei ADS ungefähr gleich häufig auf.

Belegt ist, dass hohe Noradrenalinspiegel über α1-Rezeptoren den PFC abschalten.

Wir hatten angenommen, dass ADHS-Betroffene (aufgrund einer parallel zur verringerten Cortisolstressantwort zugleich verringerten Noradrenalinstressantwort) seltener Blockaden des PFC und die damit verbundenen Denk- und Entscheidungsprobleme erleiden müssten, während ADS-Betroffene (ohne Hyperaktivität/Impulsivität) aufgrund einer erhöhten phasischen Cortisolstressantwort und einer damit einhergehenden erhöhten phasischen Noradrenalinausschüttung auf akuten Stress eine häufige kurzfristig übersteigerte Stressreaktion und ein häufigeres Abschalten des PFC (durch Noradrenalin und Cortisol) erleiden würden, was häufigere Denkblockaden auslösen könnte. Neurotransmitter bei Stress

Da die Intensität der Noradrenalinausschüttung die Intensität der Cortisolausschüttung stimuliert, hatten wir die Hypothese aufgestellt, dass Cortisol- und Noradrenalinstressantworten parallel verlaufen. Da etliche Daten darauf hindeuten, dass ADS mit erhöhten Cortisolstressantworten korreliert, wäre es bei einer Korrelation von Cortisol- und Noradrenalinstressantworten logisch gewesen, dass die bei ADS typischen erhöhten Cortissolstressantworten mit einer erhöhten stressinduzierten Freisetzung von Noradrenalin und einer daraus resultierend erhöhten α1-adrenergen Rezeptoraktivierung verbunden sind.

Die gleiche Häufigkeit von Denkblockaden bei ADHS- wie ADS-Betroffenen deutet jedoch darauf hin, dass diese Hypothese nicht richtig ist.

1.2.3.3. Details

Da der PFC die HPA-Achse kontrolliert, wird diese durch den Wegfall der Kontrolle durch den PFC zusätzlich enthemmt.
Andere Stimmen unterscheiden zwischen kurzfristigem Stress, der die kognitive Leistungsfähigkeit des PFC erhöht, und langfristigem Stress, der sie verringert,36 was sich im Ergebnis decken dürfte.

Leicht erhöhte Katecholaminspiegel aktivieren postsynaptisch alpha2A-Adrenozeptoren (durch Noradrenalin) und D1-Rezeptoren (durch Dopamin) und verbessern so die präfrontale Regulation von Verhalten und Aufmerksamkeit, während stark erhöhte Katecholaminspiegel präfrontale Funktionen verschlechtern, indem noradrenerge alpha1-Adrenozeptoren und (exzessiv) dopaminerge D1-Rezeptoren stimuliert werden.378
Alpha1-Adrenozeptoren sind weniger empfindlich als alpha2A-Adrenozeptoren und sprechen daher erst auf höhere Noradrenalinspiegel an. Wenn der Noradrenalinspiegel so hoch ist, dass er nicht nur die alpha2a-, sondern auch die alpha1-Adrenozeptoren aktiveren kann, hemmen die alpha1-Adrenozeptoren die kognitive Leistungsfähigkeit des PFC.38273940
Siehe hierzu auch die Darstellung der Adrenozeptoren = Noradrenalinrezeptoren unter Noradrenalin.

Physiologische Stressoren wie traumatische Hirnverletzungen41 oder Hypoxie42 scheinen ähnliche physiologische Wirkungen im PFC auszulösen wie psychischer Stress. Die physischen Stressoren induzieren ebenfalls die Freisetzung von Katecholaminen im mPFC und aktivieren die gleichen intrazellulären Signalereignisse (z. B. Aktivierung des cAMP-PKA-Signalwegs), die mit dem Verlust dendritischer Stacheln und der Beeinträchtigung des Arbeitsgedächtnisses einhergehen. Offenbar können verschiedene Stressoren (physische ebenso wie psychische) die Struktur und Funktion des PFC beeinträchtigen.37

Alpha1-Adrenozeptor-Antagonisten (Blocker) werden zur Behandlung von PTSD eingesetzt.

Erhöhungen von Cortisol sind mit der stressinduzierten Freisetzung von Noradrenalin und der α1-adrenergen Rezeptoraktivierung verbunden.4344
Die Erhöhung des Cortisolspiegels nach Stress wird durch Aktivierung des adrenergen Systems und der α1-adrenergen Rezeptoren vermittelt, indem eine starke Noradrenalinspiegelerhöhung alpha1-Adrenozeptoren im Hypothalamus aktiviert und dadurch zur Ausschüttung des Stresshormons CRH führt, das die weiteren Stufen der HPA-Achse aktiviert (Ausschüttung von ACTH und Cortisol).43454446
CRH verringert dosisabhängig die Leistungsfähigkeit des PFC (vor allem das Arbeitsgedächtnis). CRH-Antagonisten heben diese Wirkung auf.4748

Die Aktivierung von alpha1-Adrenozeptoren durch hohe Noradrenalinspiegel verursacht damit hohe Cortisolspiegel sowie Aufmerksamkeitsprobleme.49

Der Noradrenalinspiegel im OFC (orbitofrontaler Cortex) und in der Amygdala korreliert bei gesunden Menschen mit der Aktivierung der HPA-Achse. Bei stark übergewichtigen Menschen ist diese Korrelation dagegen invertiert.46

1.2.4. PFC und Amygdala – Stressphänotypen

Die Aktivität des PFC ist umgekehrt zu der Aktivität der Amygdala. Ein aktiver PFC korreliert mit einer weniger aktiven Amygdala und umgekehrt.50
Es ist bekannt, dass Angst und Depression bei Menschen häufiger auftritt, die Stress internalisieren, Stress also eher in sich hineinfressen (internalisierend, ADS-Subtyp) als ihn nach aussen auszuagieren (externalisierend, ADHS-/Mischtyp). Bei letzteren überwiegen externalisierende Störungsbilder wie Aggressionsstörungen (Oppositionelles Trotzverhalten; Störung des Sozialverhaltens, Borderline).

Vor diesem Hintergrund lässt sich aus der Tatsache, dass bei ADS die mit einer aktivierten Amygdala verbundenen Störungsbilder wie Angst und Depression häufiger auftreten, darauf schliessen, dass der PFC bei ADS häufiger deaktiviert ist als bei ADHS. Zusammen mit der Tatsache, dass Erhöhungen von Cortisol mit der stressinduzierten Freisetzung von Noradrenalin und der α1-adrenergen Rezeptoraktivierung verbunden sind,4344 führt uns dies zu der Annahme, dass bei ADS die Noradrenalinausschüttung auf akuten Stress analog zur Cortisolausschüttung sehr häufig überhöht sein dürfte, was eine häufigere Abschaltung des PFC und Verlagerung der Verhaltenssteuerug auf subsorticale Gehirnregionen bewirkt, während bei ADHS, das häufig mit einer verringerten Cortisolausschüttung auf akuten Stress verbunden ist, eine korrelierende verringerte Noradrenalinausschüttung vorhanden sein müsste, die seltener (und vor dem Aspekt einer Erholungsunfähigkeit vielleicht sogar zu selten) zu einer Herunterregulierung des PFC führt.

1.2.5. Dopamin bei Stress und AD(H)S

DAT-Knockout-Mäuse, die fast keine Dopamintransporter (DAT) besitzen (die also eine Art neurologisches Anti-Modell zu AD(H)S darstellen, bei dem zu viele DAT vorhanden sind) haben einige Symptome wie AD(H)S-Betroffene:51

  • Hyperaktiv
  • Lernprobleme
  • Erinnerungsprobleme

Die bei AD(H)S häufig komorbid auftretenden Störungsbilder

  • Störung des Sozialverhaltens (Conduct disorder, CD)
  • oppositionelles Trotzverhalten (ODD)
  • Psychose
  • Bipolar

sind typischerweise mit extrem erhöhten Dopaminspiegeln in manchen Gehirnbereichen verbunden.14

1.3. Stress-/AD(H)S-Symptome durch zu niedrige Katecholaminspiegel (DA / NE)

Massiver Dopaminmangel im Striatum führt zu einer massiven Störung des Antriebs. Das Interesse an Genuss ist verringert, während die Genussfähigkeit an sich nicht beeinträchtigt ist.

Dopaminmangel ist jedoch nur eine Möglichkeit, die genannten Symptome zu bewirken. Dopaminüberschuss verursacht weitgehend identische Symptome, da es vor allem auf eine Abweichung von einem zur Signalübertragung optimalen Dopaminlevel ankommt (siehe oben unter 1.1. und 1.2.).

  • Bei Ratten, denen die aufsteigenden dopaminergen Bahnen fast völlig zerstört wurden, so dass 99% weniger Dopamin verfügbar war, fehlte anschließend der Antrieb, die von ihnen zuvor bevorzugte Zuckerlösung zu sich zu nehmen. Dieses Phänomen wurde also durch Dopaminmangel im Verstärkungszentrum des Gehirns (Striatum) verursacht. Dabei war die Fähigkeit der Genusswahrnehmung der Tiere, wenn ihnen die Zuckerlösung zugeführt wurde, nach wie vor unverändert gegeben, was sich an typischen Zungenbewegungen, die Ratten bei bei ihnen angenehmen Nahrungsmitteln machen, feststellen ließ. Diese Genussreaktion konnte zudem durch hedonisch aktivierende Substanzen (z.B. Benzodiazepine) verstärkt und durch gleichzeitige unangenehme Stimuli abgeschwächt werden.5253
  • Das Neurotoxin 6-Hydroxydopamin zerstört selektiv dopaminerge Neuronen. So behandelte Tiere entwickeln hyperaktives Verhalten.54
    • Nach anderen Darstellungen wirkt 6-Hydroxydopamin dagegen eher noradrenerg.55 Noradrenalin ist bei AD(H)S ebenfalls wesentlich beteiligt.
    • Dopaminniveaustörungen durch 6-Hydroxydopamin zeigten eine große Bedeutung der D4-Rezeptoren im Nucleus caudatus (nicht aber von D2-Rezeptoren) bei der Entwicklung von Hyperaktivität.56
  • Die Betroffenen der Enzephalitisepedemie 1914 bis 1917 entwickelten typische AD(H)S-Symptome. Kinder bekamen eine hyperaktive Motorik, Erwachsene Parkinsonsymptome. Enzephalitis zerstört die Zellen in der Substantia nigra, die Dopamin herstellen. Diese Ursache konnte in Tierexperimenten als Auslöser der Symptome reproduziert werden. Die Symptome sind also Folgen des Dopaminmangels.57 Bei einer AD(H)S-Diagnostik muss auch heute eine Enzephalitis als Differentialdiagnose abgeklärt werden.
  • Perinatale Hypoxämie, die zu frühkindlichem Hirnschaden (FKHS) führt, bewirkt einen Untergang der dopaminergen Zellen im Striatum, wodurch das Dopaminniveau im Striatum um bis zu 70% sinkt.
  • Bei Parkinson-Betroffenen die Zellen der Substantia nigra beschädigt, wodurch die Synthese von Dopamin um bis zu 90 Prozent verringert ist. Dies bewirkt motorische Beeinträchtigungen wie Rigor, Tremor und Akinese. Depression ist bei Parkinson-Betroffenen um ein Vielfaches häufiger, was ebenfalls auf den Dopaminmangel zurückzuführen sein dürfte.58
  • Kokain- oder Amphetaminmissbrauch bewirkt eine Herunterregulierung der körpereigenen Dopamin-Synthese. Nach dem Absetzen der Kokainzufuhr entsteht Hyperaktivität als Entzugssymptom aufgrund des nun zu niedrigen Dopaminspiegels.59
  • Nikotin, das von AD(H)S-Betroffenen früher und häufiger konsumiert wird,60 erhöht die Dopaminausschüttung in nigrostriatalen und mesolimbischen Arealen und verbessert dadurch die Aufmerksamkeit.6162
  • Gifte wie z.B. polychlorierte Biphenyle, die die Dopamin-Synthese sowie die Speicherung von Dopamin in den Vesikeln und dessen Ausschüttung hemmen und dadurch ein zu niedriges Dopaminniveau bewirken, rufen (bei Ratten bereits in subtoxischen Dosen) ebenfalls Hyperaktivität und Impulsivität hervor.63
  • Dysphorie wird durch Dopaminmangel verursacht (nach Wender-Utah ist Dysphorie bei Inaktivität ein Kernsymptom von AD(H)S bei Erwachsenen).64

Dass Dopaminmangel an der Vermittlung von AD(H)S-Symptomen beteiligt ist, zeigt sich an der sehr guten Wirkung von Medikamenten, die im Ergebnis den Dopaminspiegel erhöhen oder eine verbesserte Reaktion auf Dopamin vermitteln. Stimulanzien (Methylphenidat, Amphetamin-Medikamente) sowie Atomoxetin wirken als Dopaminwiederaufnahmehemmer (was die Verfügbarkeit von Dopamin im synaptischen Spalt erhöht) und regen die Dopaminproduktion an.

Dennoch sind nicht alle Medikamente, die den Dopaminspiegel erhöhen, bei AD(H)S hilfreich. Die Dopamin-Agonisten L-Dopa (Levodopa), Amantadin und Piribidel beispielsweise haben trotz ihrer dopaminerhöhenden Wirkung keine positiven Effekte bei AD(H)S.65

  • Levodopa ist ein Vorstoff von Dopamin (Prodrug), der die Blut-Hirnschranke überwinden kann und wird im Gehirn zu Dopamin verstoffwechselt.66 Levodopa ist zwar hilfreich bei Parkinson und Restless-legs-Syndrom, die beide von Dopaminmangel gekennzeichnet sind, wirkt bei AD(H)S jedoch nicht.
  • Amantadin ist ein schwacher Glutamat-Rezeptor-Antagonist des NMDA-Rezeptors, erhöht die Dopaminausschüttung und wirkt als Dopamin-Wiederaufnahmehemmer. Die Wirkung bei Parkinson ist umstritten. Teilweise wird eine schwache aktivierende Wirkung auf das Arousal berichtet.67
  • Piribedil ist ein Piperazin-Derivat und daher ein Non-Ergot-Dopaminagonist.
    Piribedil ist Agonist der D2 und D3-Dopaminrezeptoren und Antagonist der α2-Adrenorezeptor-Subtypen α2A und α2C. Es wird gegen Parkinson eingesetzt, auch zusammen mit Levodopa.

Während bei kurzfristigem Stress ohne AD(H)S ein Übermass an Katecholaminen (Dopamin und Noradrenalin) im PFC vorhanden ist,51 führt früher langfristiger Stress zu einer Downregulation der Dopamin- und Noradrenalinsysteme. Beispielsweise verringert chronischer frühkindlicher Stress den Dopaminspiegel im Nucleus accumbens.68

Bewegungseinschränkender Stress bei Ratten bewirkt über Noradrenalin an Beta-Adrenozeptoren der Amygdala eine spätere Downregulation von Dopamin im ventralen Tegmentum.69

Ob bei AD(H)S ein zu geringes oder ein zu hohes Maß an (tonischen = langfristigen) Katecholaminen vorhanden ist, wird intensiv diskutiert.70
Die Uneinigkeit der Wissenschaft deutet darauf hin, dass beide Varianten vorkommen. Möglicherweise unterscheiden sich hieran die Subtypen und individuellen Symptomzusammensetzungen der jeweiligen Betroffenen. Unstreitig ist, dass viele AD(H)S-Betroffene einen verringerten Dopaminspiegel in PFC und Striatum aufweisen.
Wir gehen nach derzeitigem Wissensstand davon aus, dass bei AD(H)S ein Mangel an Dopamin- und Noradrenalin in dlPFC, Striatum und wohl auch Cerebellum vorliegt.

Die typischen AD(H)S-Medikamente (Stimulanzien und Atomoxetin wirken als Dopamin- und Noradrenalinwiederaufnahmehemmer. Stimulanzien erhöhen die DA- und NE-Pegel im PFC und Striatum, Atomoxetin nur im PFC) erhöhen die Verfügbarkeit dieser Neurotransmitter im synaptischen Spalt.

Umgekehrt müsste dies dazu führen, dass Stimulanzien bei stressinduzierten “Schein-AD(H)S”-Symptomen nicht wirken, da sie das bereits über dem Optimum befindlichen Dopaminspiegel noch weiter anheben und damit noch weiter vom funktionalen Niveau entfernen. Während bei AD(H)S die Dopamin- und Noradrenalinspiegel (bzw. die DA- / NE-Wirkung) verringert sind, haben Menschen (mit akutem, aber nicht chronisch langanhaltendem Stress) ohne AD(H)S keine verringerten sondern eher erhöhte Spiegel von Dopamin und Noradrenalin. Deshalb müsste eine weitere Erhöhung der DA- und NA-Spiegel bei Nichtbetroffenen die Symptome eher verschlimmern, während sie bei AD(H)S hilfreich sind.

Einige Untersuchungen deuten darauf hin, dass diese Überlegungen berechtigt sein könnten:

Nur geringe Dosen von Methylphenidat bewirken auch bei nicht gestressten Gesunden eine Verbesserung der Aufmerksamkeit und exekutiven Fähigkeiten, höhere Dosen wirken dagegen negativ.8 Dies entspricht der leichten DA- und NE-Erhöhung bei leichtem Stress, die die kognitiven Fähigkeiten erhöht und der starken DA- und NE-Erhöhung bei schwerem Stress, die den PFC abschaltet.

Allerdings sprechen viele AD(H)S-Betroffene nur auf manche AD(H)S-Medikamente an, so dass in der Praxis aus einer Nichtwirkung von Medikamenten alleine keine diagnostische Schlussfolgerungen gezogen werden können. Dies liegt in den oben beschriebenen großen Unterschieden, welcher Stress beim jeweils Betroffenen eine Downregulation in welchen Gehirnbereichen verursacht hat.

2. Störungen des Dopaminsystems bei Stress

Stress aktiviert unmittelbar das dopaminerge System im Gehirn (ZNS),71 das bei AD(H)S zentral beeinträchtigt ist.

Eine Metaanalyse einer großen Anzahl von Studien ergab, dass bei akutem Stress der Dopaminspiegel und der Dopaminmetabolismus besonders im PFC ansteigt, weniger hingegen in anderen subkortikalen Bereichen.7273

Akuter Stress erhöht den DA-Spiegel bei gesunden Ratten

  • im mPFC um 95%
  • im Nucleus accumbens um 39%
  • im Striatum um 25%74

Dopamin wird bei Stressantworten im wesentlichen vom ventralen Tegmentum an den PFC und Nucleus accumbens projiziert, wobei die Projektion an den PFC besonders stresssensitiv ist.757673

  • Dopamin spielt eine Rolle in den hedonischen und Belohnungsaspekten von Stress.
  • Die Auswirkungen von Stress auf sexuelle Aktivität und Appetit sowie auf die Affinität zu Drogenmissbrauch dürften durch das Dopamin-System vermittelt werden.
  • Dopamin erhöht die Fähigkeit neuronaler Informationsverarbeitung und damit die Lern- und Informationsverarbeitung in Bezug auf den aufgetretenen Stressor.
  • Die Amygdala (dort der Zentralkern) beeinflusst die Dopamin-Neurotransmission im PFC. Läsionen der zentralen Amygdala blockieren die stressinduzierte Dopaminfreisetzung in der PFC. Eine Infusion von AMPA in den Zentralkern der Amygdala bewirkt einen raschen Dopaminanstieg im PFC sowie (dadurch) ein erhöhtes Arousal.7773 Dies deckt sich mit der Rolle der Amygdala bei der Koordination neuronaler Systeme zur Verhaltensregulation bei Stress

2.1. Unterschiedliche Stressarten bewirken unterschiedliche Dopaminwirkungen

Stress ist nicht gleich Stress. Je nach Art des Stresses werden verschiedene Auswirkungen auf das Dopaminsystem ausgelöst.

Die Arten von Stress unterscheiden sich dabei nach:

  • Dauer und Intensität des Stresses
    Leichter Stress erhöht den Dopaminspiegel (wie auch den Noradenalinspiegel) im PFC leicht und verbessert damit die kognitive Leistungsfähigkeit. Schwerer Stress erhöht den Dopaminspiegel und den Noradrenalinspiegel im PFC extrem und bewirkt eine Abschaltung des PFC. Die Verhaltenssteuerung wird an andere Gehirnteile ausgelagert.
  • Art des Stressors Jeder Stressor hat eigene, spezifische Auswirkungen auf die Neurotransmitter. Unterschiedliche Stressoren sind z.B.
    • Psychischer Stress
    • körperliche Schmerzen
    • Verletzungen
    • Kälte
    • Hitze
    • Krankheiten

Alle Stresssymptome haben jeweils eigene neurophysiologische Korrelate.
Ein neurophysiologisches Korrelat bedeutet, dass zusammen mit dem Symptom eine spezifische Aktivität oder Veränderung in einem bestimmten Bereich des Gehirns eintritt.

2.1.1. Leichter/schwerer – kurzer/langer – früher/später Stress

  • Niedrige Stressniveaus werden vornehmlich im mesopräfrontalen System verarbeitet. Andere aufsteigende dopaminerge Systeme werden hierdurch nicht beeinflusst.7873 Dies könnte an einer erheblich geringeren Anzahl inhibitorischer D2-Autorezeptoren im mesopräfrontalen Bereich und umfangreichen exzitatorischen Signalen an das ventrale Tegmentum liegen.
  • Leichter Stress erhöht den Dopamin-, Serotonin- und Noradrenalinmetabolismus79 im mPFC.80
    • Serotonin beeinflusst
      • den Hypothalamus (Teil der HPA-Achse / Stressregulationsachse)
      • die Amygdala, die die HPA-Achse aktiviert
      • den Hippocampus, der die HPA-Achse hemmt.
  • Leichter (nicht zu lang anhaltender) Stress bewirkt leicht erhöhte Noradrenalin- und Dopaminspiegel im PFC.
  • Leicht erhöhte Noradrenalin- und Dopaminspiegel erhöhen die Aktivität des PFC und damit dessen kognitive und exekutive Leistungsfähigkeit.
  • Stark erhöhte Dopamin- und/oder Noradrenalinspiegel schalten den PFC ab und verlagern die Verhaltenskontrolle an andere Gehirnareale.
  • Kurzfristiger intensiver Stress erhöht den Dopaminspiegel im PFC massiv.
  • Chronischer frühkindlicher Stress verringert den Dopaminspiegel im Nucleus accumbens durch Downregulation.68
  • Dopamin im mPFC unterdrückt normalerweise die mesolimbische Dopaminübertragung. Dies gelingt jedoch bei extremen oder unvorhersehbaren Belastungen nicht mehr. Die Dopamin-Innervation scheint auch für die stressinduzierte Aktivierung von Neuronen in der Stria terminalis (anterolaterale BNST) wichtig zu sein.8173 die sowohl bei der Aktivierung von stressabhängigen Schaltkreisen höherer Ordnung als auch bei der Erzeugung von Bewältigungsverhalten involviert sind.
  • Erhöhte Dopaminspiegel im mPFC führen zu einer Verringerung des Dopaminspiegels im Nucleus accumbens im Striatum (Verstärkungszentrum), was dort langfristig mittels Upregulation zur Überaktivierung der Dopamintransporter führten könnte, die ein Hauptproblem bei AD(H)S sind.
  • Chronischer Stress führt über eine Downregulation (Erhöhung der Anzahl der Dopamintransporter und Dopaminrezeptoren) zu einer Verringerung des Dopaminspiegels im PFC.
  • Bei chronischem Stress ist der nach der Downregulation verringerte Dopaminspiegel im PFC dennoch verbunden mit
    • mit einer Übererregung des PFC
    • mit einer Verringerung des Dopaminspiegels im Nucleus accumbens im Striatum
  • Chronischer frühkindlicher Stress (tägliches in die Hand nehmen bei Ratten, Handling) führt zu erhöhtem Dopaminmetabolismus im Nucleus accumbens im Erwachsenenalter. Dieser resultiert aus einem Verlust der inhibitorischen Kontrolle durch den rechten mPFC aufgrund eines dort vorzufindenden Dopaminmangels. Der Dopaminmangel wiederum korreliert mit einer Erhöhung der Dopamintransporteranzahl.82
  • Die Langfristigkeit (Chronifizierung) von Stress und das Mass der Kontrolle über den Stressor verändert dopaminabhängige Verhaltensweisen und die Aktivierung von Afferenzen zum Nucleus accumbens.8373

2.1.2. Unterschiedliche Stressoren

Jeder Stressor hat seine eigene, spezifische Auswirkung auf Dopamin.84

2.1.2.1. Psychischer Stress
  • Psychischer Stress aktiviert dopaminerg anscheinend nur das D2-Rezeptorsystem.85
  • Psychosozialer Stress
    • erhöht die Zahl der D2-Rezeptor-Bindungsstellen im Hippocampus.86
    • reduziert nach 4 Wochen Dauer die Bindung des Liganden 3 H-WIN 35.428 für den Dopamintransporter im Striatum.85
    • Chronischer psychosozialer Stress führt zu einer „Schrumpfung“ der Dendriten von Pyramidenneuronen in der Region CA 3 des Hippocampus.87
    • Chronischer sozialer Stress reduzierte bei Mäusen88
      • im Hypothalamus: Dopamin-, Noradrenalin- und Serotoninspiegel
      • im PFC: Serotonin- und Dopaminspiegel
    • Alkohol im Striatum führte bei den unterlegenen Mäusen zu keiner Erhöhung des Dopaminspiegels, während der Dopaminspiegel bei nicht unterlegenen Mäusen anstieg
  • In die Hand nehmen (von Mäusen; Handling)
    • erhöht Dopaminspiegel
      • im mPFC8990
      • im Nucleus accumbens (allerdings gering)90
    • verändert Dopaminspiegel nicht
      • im Striatum90
  • akute körperlicher Einengung (Fixierung)
    • erhöht Dopamin im mPFC und im Nucleus accumbens (mesolimbisches Dopaminsystem)91 sowie Acetylcholin im Hippocampus.92
    • Die Dopaminerhöhung im mPFC und Nucleus accumbens wie die Acetylcholinerhöhung im Hippocampus erfolgen ebenso auf die anschließende Befreiung, weshalb dies ein Korrelat emotionaler Erregung aufgrund plötzlicher Änderung der Umwelteinflüsse sein könnte.9291
    • erhöht die Konzentrationen des Dopamin-Metaboliten DOPAC in PFC und Nucleus accumbens93
    • induziert Fos-Immunoreaktivität in Dopamin-Neuronen des Ventralen Tegmentums (VTA), jedoch nicht in der Substantia nigra94
  • Stress durch neue Umgebung
    • erhöht Dopaminspiegel im rechten PFC95
  • Ängstliches Verhalten in der Offenumgebung
    • korreliert mit erhöhtem Dopaminspiegel im rechten PFC96
  • Fluchtverhalten auf Schocks
    • korreliert mit erhöhtem Dopaminspiegel im rechten PFC97
2.1.2.2. Verletzungen und Infektionen
  • Verletzungen und Infektionen aktivieren das D1- und das D2-Rezeptorsystem85
2.1.2.3. wiederholte Schmerzzufügung
  • elektrische Schocks
    • aktivieren das mesolimbische Dopaminsystem9291
    • erhöhen die Fos-Expression
      • in prälimbischen und infralimbischen Kortexen98
      • in Tyrosin-Hydroxylase-markierten Neuronen des ventralen Tegmentums (VTA)98
  • Schwanzquetschungen bei Mäusen
    • erhöhen Dopaminspiegel
      • im mPFC90

      • im Nucleus accumbens (allerdings gering)90

      • verändern Dopaminspiegel nicht

        • im Striatum90
2.1.2.4. Geburtsstress
  • Sauerstoffmangel während der Geburt führt zu erhöhtem Dopaminmetabolismus im Nucleus accumbens im Erwachsenenalter. Dieser resultiert aus einem Verlust der inhibitorischen Kontrolle durch den rechten medialen präfrontalen Kortex (PFC) aufgrund eines dort vorzufindenden Dopaminmangels. Der Dopaminmangel wiederum korreliert mit einer Erhöhung der Dopamintransporteranzahl.82
2.1.2.5. Hypotonie
  • erhöht den Dopaminspiegel im mPFC9973
2.1.2.6. Konditionierter Stress
  • erhöht den Dopaminspiegel und Serotoninspiegel im
  • verändert Dopaminspiegel nicht in
  • Akuter konditionierter Stress soll lediglich den Noradrenalinspiegel im mPFC, nicht aber den Dopaminspiegel erhöhen.101

2.2. Dopaminerge neurophysiologische Korrelate verschiedener Stressreaktionen

Unterschiedliche Stressreaktionen haben unterschiedliche dopaminerge neurologische Korrelate.

  • Schreckhaftigkeit wird durch erhöhtes Dopamin im dorsalen Striatum und durch Stimulation der (Dopamin eproduzierenden) Substantia nigra pars compacta gesteuert.71
  • Dopaminfreisetzung im mesolimbischen System (Nucleus accumbens = ventrales Striatum) durch elektrische Reizung des ventralen Tegmentums fördert das aversiv motivierte Lernen (Lernen aus Stresserfahrungen). Eine medikamentöse Blockade von Dopaminrezeptoren in der Amygdala unterbindet dies.71
  • Aufrechterhaltung der Aufmerksamkeit zur Problemlösung wird durch den dorsolateralen präfrontalen Cortex gesteuert.102
  • Selektive Aufmerksamkeit (Aufmerksamkeitslenkung) wird durch den dorsalen anterioren cingularen Cortex gesteuert.102
  • Hyperaktivität wird durch den orbifrontalen Cortex103 und den präfrontalen motorischen Cortex gesteuert.102
  • Impulsivität wird durch den orbitofrontalen Cortex und den Cortico-Striatal-Thalamocorticalen Loop (Kortex-Striatum-Thalamus-Regelkreis) gesteuert.104
  • Läsionen der linken und rechten Amygdala unterbinden einen Dopaminanstieg im mPFC und andere Stressreaktionen auf konditionierten Stress.80
  • Durch ein Netzwerk aus dem ventromedialen PFC und dem limbischen System werden gesteuert:105
    • Störung des Sozialverhaltens (Conduct Disorder, CD)
    • oppositionelles Trotzverhalten (ODD)
    • Aggressionen
    • Angststörungen
    • Bipolare Störung

3. Adrenalin, Noradrenalin und Stress

Im ZNS wird Stress vornehmlich durch Noradrenalin moduliert24

  • Mäßige Noradrenalinpegel
    • stärken die Funktion des PFC
  • hohe Noradrenalinpegel
    • schalten den PFC ab (was das analytische Denken beeinträchtigt)
    • verstärken die sensomotorischen und affektiven Regionen des Gehirns (was Wahrnehmung und Emotion intensiviert)

Die Aktivierung von Mikroglia durch Stress scheint mittels Noradrenalin über β1- und β2-Adrenozeptoren, nicht aber über β1-AR β3-Adrenozeptoren oder α-Adrenozeptoren vermittelt zu werden.106

Zweitklässler zeigten an Prüfungstagen einen erhöhten Cortisolspiegel und gleichzeitig einen verringerten Adrenalin- und Noradrenalinspiegel. Die individuellen Unterschiede in den ausgeschiedenen Hormonen standen in signifikantem Zusammenhang mit Persönlichkeitsvariablen, die im Klassenzimmer beobachtet wurden, sowie mit den Auswirkungen von akademischem Stress:107

  • Soziales Annäherungsverhalten korrelierte mit höheren Cortisol- und Adrenalinspiegeln
  • Zappeligkeit korrelierte mit niedrigem Adrenalinspiegel
  • Aggressivität korrelierte mit hohen Noradrenalinspiegeln
  • Unaufmerksamkeit korrelierte mit niedrigen Noradrenalinspiegeln

4. Serotonin und Stress

Es besteht ein Zusammenhang zwischen Serotonin und Empfindlichkeit für Stress. Die Ergebnisse sind jedoch heterogen und die Ursachen und die Zusammenhänge sind noch unklar.108
Es besteht ein Zusammenhang zwischen Serotonin und dem Cortisolspiegel.
Stress erhöht bei Gesunden den Serotoninspiegel109 ebenso wie den Noradrenalin-, Dopamin- und Cortisolspiegel110.
Akuter Stress soll dagegen die Serotoninproduktion der dorsalen Raphekerne verringern, während Fluoxetin die Serotoninproduktion anregt.111
Starker, lebensbedrohlicher Stress scheint die Funktion und Expression der Serotonin-2-A-Rezeptoren zu erhöhen, wie es bei PTSD festgestellt wird. Paradoxerweise wirkt das PTSD-Medikament 3,4-Methylenedioxymethamphetamin als Serotonin-2-A-Rezeptor-Agonist.112

Wird die Nebennierenrinde entfernt, so dass kein Cortisol mehr ausgeschüttet werden kann,

  • verändert dies die Serotoninausschüttung in den dorsalen Raphekernen (DRN)
    • nicht bei Nomalbedingungen
    • verringerte sie jedoch unter Stress
      Eine Stimulation der Glucocorticoidrezeptoren in den DRN unterbindet dann die stressbedingte Serotoninblockade.108
  • vermeidet bei chronischem unvorhersehbaren Stress113
    • die normalerweise entstehenden Depressionen
    • nicht aber die normalerweise entstehende Angst
      • an deren Entstehung der Mineralocorticoidrezeptor beteiligt ist
      • die mit der die Zellproliferation im Hippocampus eng verbunden ist
  • erhöht dies den Serotoninspiegel und die TPH2-Expression im Hippocampus auf chronischen unvorhersehbaren Stress.113

Wiederholter Stress erhöht die Serotoninproduktion stärker als einmaliger Stress114 und führt zu einer apikalen Dendritenverringerung im medialen PFC, was die Anzahl erregender postsynaptischer Ereignisse verringert, die mittels Serotonin und Orexin/Hypokretin vermittelt werden. Cortisol führte nicht zu dieser Folge. Ein vor dem Stress gegebener GR-Antagonist vermied die Verringerung der durch Serotonin vermittelten erregenden postsynaptischen Ereignisse, nicht aber die durch Orexin/Hypokretin vermittelten.115

Chronischer Stress erhöht den Cortisolspiegel eher durch Ausschüttung von Vasopressin als durch CRH.114

Cortisol erhöht den Serotoninspiegel in der Amygdala und im PFC116 sowie im Hippocampus.114 Dies erfolgt wahrscheinlich durch Aktivierung der Glucocorticoidrezeptoren. Denn eine Hemmung der Monoaminoxidase erhöht den Serotoninspiegel, während eine Verringerung des Cortisolspiegels diese (durch Monooxidasehemmung bewirkte) Serotoninerhöhung unterbindet.117 Diese Wirkung von Cortisol dauert (wie bei SSRI) lange und erfolgt vermutlich durch Desensibilisierung des Serotonin-1-A-Autorezeptors.118 Die durch SSRI wie Fluoxetin verursachte Desensibilisierung des Serotonin-1-A-Autorezeptors scheint jedoch unabhängig vom Glucocorticoidrezeptor zu wirken.119

Eine Entfernung der Nebenniere (in deren “Rinde” Cortisol hergestellt wird) bewirkt108

  • unveränderte Serotonintransporterexpression in den dorsalen Raphekernen (in denen Serotonin produziert wird)
  • unveränderte [3H]Cyano-Imipramin-Bindung an Serotonintransporter in den dorsalen Raphekernen
  • unveränderte [3H]Citalopram-Bindung an Serotonintransporter des Mesencephalon (Mittelhirn)
  • verringerte Serotoninwiederaufnahme im Mesencephalon (Mittelhirn)
  • bei gleichzeitiger langfristiger Gabe von MR- und GR-bindenden Kortikoiden keine Änderung an Serotonintransporten in den dorsalen Raphekernen, medialen Raphekernen oder im Mesencephalon

Bei gesunden Ratten, verursacht108

  • eine akute Corticosterongabe eine unveränderte Serotoninwiederaufnahme im Mesencephalon (Mittelhirn)
  • eine langfristige Infusion von Dexamethason (ein stärkerer GR-Agonist als MR-Agonist)
    • verringert die Serotonintransporterexpression im Mittelhirn
    • beeinflusst diese aber nicht im Hippocampus oder PFC.
  • kurzfristiger Stress hat keinen Einfluss auf die Serotonintransporterdichte im Mittelhirn
  • anhaltender Stress (21 Tage)
    • erhöht die [3H]Cyano-Imipramin-Bindung in den dorsalen Raphekernen
    • erhöht (in geringerem Maße) Serotonintransporter in den medialen Raphekernen

Serotonin interagiert weitreichend mit BDNF in Bezug auf120

  • Aggression
  • Depression
  • Drogensucht
  • Suizidalität
  • Stressregulation
  • Gehirnplastizität

4.1. Serotoninmangel und Stress

Serotoninmangel mittels eines Entzugs des Serotoninvorstoffs Tryptophan aktiviert die HPA-Achse ebenso wie ein anderer Stressor, bewirkte jedoch mit diesem zusammen keine synergistischen Stressachsenauswirkungen.121122

Eine SSRI-Gabe reduzierte in einer Studie die PTSD-Symptomschwere bei Kindern und Erwachsenen.123

Serotoninmangel steht klinisch evident in Verbindung mit120

  • Depression
  • Angst
  • Impulsivität
  • Selbstmordtendenzen
  • Schizophrenie.

4.2. Serotonintransporter und Stress

Eine verringerte Serotonintransporterbindungsaffinität korreliert mit einer erhöhten Cortisolstressantwort und erhöhten Angstzuständen.124

Zum Serotonintransporter-Genotyp fanden verschiedene Untersuchungen

  • keinen signifikanten Einfluss auf Cortisolstressantwort oder Stimmung124
  • dass der 5-HTTLPR short/short Genotyp mit einer höheren Cortisolstressantwort korreliert
    • bei jungen Erwachsenen auf psychosozialen Stress125
    • bei Neugeborenen auf einen physikalischen Stressor126
  • dass die Gruppe der 5-HTTLPR short Genotypen (SS, SLG, LGLG, SLA, LGLA) im Vergleich zu 5-HTTLPR long/long (LALA) bei jüngeren Erwachsenen, nicht aber bei Kindern, mit einer größeren Häufigkeit frühkindlicher Stresserfahrungen in den ersten 5 Lebensjahren korrelierte.127
  • Zwillinge, die Mobbing erlitten hatten, hatten im Alter von 10 Jahren eine höhere Serotonintransporter-Methylierung als ihre Zwillingsgeschwister ohne Mobbing-Erfahrung. Zwillinge mit späterer (!) Mobbing-Erfahrung zeigten bereits mit 5 Jahren, also vor dieser (!) Mobbing-Erfahrung, eine ansteigende Methylierung im Vergleich zu ihren nicht gemobbten Zwillingsgeschwistern. Kinder mit höheren Serotonintransporter-Methylierungswerten zeigten eine abgeflachte Cortisolstressantwort.128 Dies könnte damit zusammenhängen, dass Menschen mit Beeinträchtigungen (wie z.B. AD(H)S) häufiger Opfer von Gewalt werden. AD(H)S erhöhte die Wahrscheinlichkeit nach einer Studie auf das 2,7-fache.129
  • dass die Gruppe der 5-HTTLPR short Genotypen (SS, SLG, LGLG, SLA, LGLA) in Kombination mit vielen frühkindlichen Stresserfahrungen in den ersten 5 Lebensjahren
    • korreliert mit einer hohen Cortisolstressantwort auf den TSST.127 Ähnliche Ergebnisse fanden etliche weitere andere Studien.130131132
  • dass 5-HTTLPR long/long (LALA) in Kombination mit wenigen frühkindlichen Stresserfahrungen in den ersten 5 Lebensjahren
    • mit einer hohen Cortisolstressantwort auf den TSST korreliert130
    • was eine andere Studie nur bei jüngeren Erwachsenen fand127
    • während eine weitere Studie keine Korrelation feststellen konnte132

5. Die Stresshormone CRH, Cortisol und Stress

CRH und Cortisol sind keine Neurotransmitter, sondern Hormone, die vom Hypothalamus als erste Stufe der HPA-Achse (CRH) bzw. der Nebennierenrinde als letzte Stufe der HPA-Achse (Cortisol) gebildet werden.
Da die HPA-Achse für das Verständnis von Stress und AD(H)S essentiell ist, verweisen wir hier auf die ausführliche Darstellung unter Die HPA-Achse / Stressregulationsachse und ⇒ Cortisol bei AD(H)S.

Ältere Erwachsene

  • mit einer niedrigen Anzahl von Stresslebenserfahrungen in den ersten 15 Lebensjahren zeigten die höchste Cortisolstressantwort127
  • mit einer hohen Anzahl von Stresslebenserfahrungen in den ersten 15 Lebensjahren zeigten die niedrigste Cortisolstressantwort127

Während manche Autoren127 eine niedrige Cortisolstressantwort als Maßstab einer gesunde Reaktion betrachten, stellen wir uns die Frage, ob nicht vielmehr eine mittlere Cortisolstressantwort gesund ist und eine besonders niedrige ebenso wie eine überhöhte Cortisolstressantwort ein Zeichen einer Stresssystemschieflage darstellen, so wie das auch bei der Cortisolstressantwort der Fall ist.


  1. Diamond (2014): Biologische und soziale Einflüsse auf kognitive Kontrollprozesse, die vom präfrontalen Kortex abhängen; In: Kubesch (Herausgeberin): Exekutive Funktionen und Selbstregulation – Neurowissenschaftliche Grundlagen und Transfer in die pädagogische Praxis; Huber, Seite 30

  2. Cools, D’Esposito (2011): Inverted-U shaped dopamine actions on human working memory and cognitive control; Biol Psychiatry. 2011 Jun 15; 69(12): e113–e125. doi: 10.1016/j.biopsych.2011.03.028; PMCID: PMC3111448; NIHMSID: NIHMS286132;

  3. Castellanos, Tannock (2002): Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes; Article in Nature reviews Neuroscience 3(8):617-28 · September 2002; DOI: 10.1038/nrn896, S. 621 mwNw

  4. Krause und Krause (2014): ADHS im Erwachsenenalter; Symptome – Differentialdiagnose – Therapie; S. 267

  5. Mattay, Goldberg, Fera, Hariri, Tessitore, Egan, Kolachana, Callicott, Weinberger (2003): Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine; doi: 10.1073/pnas.0931309100; PNAS May 13, 2003 vol. 100 no. 10 6186-6191

  6. Zahrt, Taylor, Mathew, Arnsten (1997): Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci. 1997 Nov 1;17(21):8528-35.

  7. Arnsten, Cai, Murphy, Goldman-Rakic (1994): Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berl). 1994 Oct;116(2):143-51.

  8. Arnsten (2006): Stimulants: Therapeutic Actions in ADHD; Neuropsychopharmacology 2006 31, 2376–2383. doi:10.1038/sj.npp.1301164

  9. Cai, Arnsten (1994): Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. J Pharmacol Exp Ther. 1997 Oct;283(1):183-9.

  10. Gibbs, D’Esposito (2005): Individual capacity differences predict working memory performance and prefrontal activity following dopamine receptor stimulation Cognitive, Affective, & Behavioral Neuroscience (2005) 5: 212. https://doi.org/10.3758/CABN.5.2.212

  11. Lidow, Koh, Amsten (2003). D1 dopamine receptors in the mouse prefrontal cortex: Immunocytochemical and cognitive neuropharmacological analyses. Synapse, 47, 101- 108.

  12. Vijayraghavan, Wang, Birnbaum, Williams, Arnsten (2007): Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci. 2007 Mar;10(3):376-84.

  13. Stahl (2013): Stahl’s Essential Psychopharmacology, 4. Auflage, Chapter 12: Attention deficit hyperactivity disorder and its treatment, Seite 477

  14. Stahl (2013): Stahl’s Essential Psychopharmacology, 4. Auflage, Chapter 12: Attention deficit hyperactivity disorder and its treatment, Seite 488

  15. Poltavski, Petros (2006): Effects of transdermal nicotine on attention in adult non-smokers with and without attentional deficits. Physiol Behav. 2006 Mar 30;87(3):614-24.

  16. Abercrombie, Keefe, DiFrischia, Zigmond (1989): Differential Effect of Stress on In Vivo Dopamine Release in Striatum, Nucleus Accumbens, and Medial Frontal Cortex. Journal of Neurochemistry, 52: 1655–1658; doi:10.1111/j.1471

  17. ohne Zahlenangaben: Finlay, Zigmond (1997): The effects of stress on central dopaminergic neurons: possible clinical implications. Neurochem Res. 1997 Nov;22(11):1387-94.

  18. Heinz (2000/2013): Das dopaminerge Verstärkungssystem; Seite 105, mit weiteren Nachweisen; die Ausgabe 2013 scheint gegenüber derjenigen von 2000 unverändert

  19. Arnsten, Contant (1992): a-2 adrenergic agonists decrease distractibility in aged monkeys performing the delayed response task. Psychopharmacology 108, 159-169.

  20. Arnsten, Leslie (1991): Behavioral and receptor binding analysis of the a-2 adrenergic agonist, UK-14304 (5 bromo-6 2-imidazoline-2-yl amino quinoxaline): Evidence for cognitive enhancement at an a-2 adrenoceptor subtype. Neuropharmacology 30, 1279-1289.

  21. Arnsten, Cai, Goldman-Rakic (1988): The a-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: Evidence for a-2 receptor subtypes. J. Neurosci. 8, 4287-4298

  22. Cai, Ma, Xu, Hu, (1993): Resperine impairs spatial working memory performance in monkeys: Reversal by the a-2 adrenergic agonist clonidine. Brain Res. 614, 191-196

  23. Skosnik, Chatterton, Swisher, Park (2000): Modulation of attentional inhibition by norepinephrine and cortisol after psychological stress; International Journal of Psychophysiology 36 2000 59-68

  24. Ramos, Arnsten (2007): Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther. 2007 Mar; 113(3):523-36., Kapitel 6

  25. Birnbaum, Gobeske, Auerbach, Taylor, Arnsten (1999): A role for norepinephrine in stress-induced cognitive deficits: α-1-adrenoceptor mediation in prefrontal cortex. Biol. Psychiatry 46, 1266–1274.

  26. Ramos, Colgan, Nou, Ovadia, Wilson, Arnsten (2005). The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys. Biol. Psychiatry 58, 894–900.

  27. Arnsten, Scahill, Findling (2007): alpha2-Adrenergic receptor agonists for the treatment of attention-deficit/hyperactivity disorder: emerging concepts from new data. J Child Adolesc Psychopharmacol 2007;17:393–406.

  28. ähnlich: Arnsten (2000): Stress impairs prefrontal cortical function in rats and monkeys: role of dopamine D1 and norepinephrine alpha-1 receptor mechanisms. Prog Brain Res. 2000;126:183-92.

  29. Für starke Stimulation des D1-Dopaminrezeptors: Zahrt, Taylor, Mathew, Arnsten (1997): Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci. 1997 Nov 1;17(21):8528-35.

  30. Kao, Stalla, Stalla, Wotjak, Anderzhanova (2015): Norepinephrine and corticosterone in the medial prefrontal cortex and hippocampus predict PTSD-like symptoms in mice. Eur J Neurosci, 41: 1139–1148. doi:10.1111/ejn.12860

  31. Dietrich (2010): Aufmerksamkeitsdefizit-Syndrom, Schattauer

  32. Mobbs, Petrovic, Marchant, Hassabis, Weiskopf, Seymour, Dolan, Frith (2007): When fear is near: threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science. 2007 Aug 24;317(5841):1079-83.

  33. Shansky, Lipps (2013): Stress-induced cognitive dysfunction: hormone-neurotransmitter interactions in the prefrontal cortex. Front. Hum. Neurosci. 7, 123. http://dx.doi.org/10.3389/fnhum.2013.00123

  34. Vogel, Fernández, Joëls, Schwabe (2016): Cognitive Adaptation under Stress: A Case for the Mineralocorticoid Receptor DOI: https://doi.org/10.1016/j.tics.2015.12.003. OPINION, VOLUME 20, ISSUE 3, P192-203, MARCH 01, 2016

  35. Wagner, Born: Psychoendokrine Aspekte neurophysiologischer Funktionen. In: Lautenbacher, Gauggel (2013): Neuropsychologie psychischer Störungen, Springer, Seite 131

  36. McEwen, Sapolsky (1995): Stress and cognitive function. Curr. Opin. Neurobiol. 5, 205-216.

  37. Arnsten (2020): Guanfacine’s mechanism of action in treating prefrontal cortical disorders: Successful translation across species. Neurobiol Learn Mem. 2020 Dec;176:107327. doi: 10.1016/j.nlm.2020.107327. PMID: 33075480; PMCID: PMC7567669.

  38. Ramos, Arnsten (2007): Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 2007;113:523–536.

  39. Aston-Jones, Cohen (2005): An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 2005;28:403–450.

  40. Aston-Jones, Cohen (2005): Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol 2005;493:99–110.

  41. Kobori, Moore, Dash (2015): Altered regulation of protein kinase a activity in the medial prefrontal cortex of normal and brain-injured animals actively engaged in a working memory task. J Neurotrauma. 2015 Jan 15;32(2):139-48. doi: 10.1089/neu.2014.3487. Epub 2014 Nov 13. PMID: 25027811; PMCID: PMC4291093.

  42. Kauser, Sahu, Kumar, Panjwani (2013); Guanfacine is an effective countermeasure for hypobaric hypoxia-induced cognitive decline. Neuroscience. 2013 Dec 19;254:110-9. doi: 10.1016/j.neuroscience.2013.09.023. PMID: 24056194.

  43. Al-Damluji (1988): Adrenergic mechanisms in the control of corticotrophin secretion. J Endocrinol 1988;119:5–14.

  44. Plotsky, Cunningham, Widmaier (1989): Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr Rev 1989;10:437–458.

  45. Dunn, Swiergiel, Palamarchouk (2004): Brain circuits involved in corticotropin-releasing factor-norepinephrine interactions during stress. Ann N Y Acad Sci 2004;1018:25–34.

  46. Schinke, Hesse, Rullmann, Becker, Luthardt, Zientek, Patt, Stoppe, Schmidt, Meyer, Meyer, Orthgieß, Blüher, Kratzsch, Ding, Then Bergh, Sabri (2018): Central noradrenaline transporter availability is linked with HPA axis responsiveness and copeptin in human obesity and non-obese controls. Stress. 2018 Oct 29:1-10. doi: 10.1080/10253890.2018.1511698.

  47. Hupalo, Berridge (2016): Working Memory Impairing Actions of Corticotropin-Releasing Factor (CRF) Neurotransmission in the Prefrontal Cortex. Neuropsychopharmacology. 2016 Oct;41(11):2733-40. doi: 10.1038/npp.2016.85.

  48. http://www.depression-therapie-forschung.de/hormone.html

  49. Lee, Shin, Stein (2010): Increased Cortisol after Stress is Associated with Variability in Response Time in ADHD Children; Yonsei Med J. 2010 Mar;51(2):206-211. English. https://doi.org/10.3349/ymj.2010.51.2.206

  50. Wheelock, Harnett, Wood, Orem, Granger, Mrug, Knight (2016): Prefrontal Cortex Activity Is Associated with Biobehavioral Components of the Stress Response. Front Hum Neurosci. 2016 Nov 17;10:583. eCollection 2016.

  51. Steinhausen, Rothenberger, Döpfner (2010): Handbuch ADHS, Seite 83

  52. Berridge, Robinson (1998): What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998 Dec;28(3):309-69

  53. Heinz (2000): Das dopaminerge Verstärkungssystem – Funktion, Interaktion mit anderen Neurotransmittern und psychopathologische Korrelate; Monografien aus dem Gesamtgebiet der Psychiatrie, Seite 10

  54. Trott, Wirth (2000): die Pharmakotherapie der hyperkinetischen Störungen; in: Steinhausen (Herausgeber) hyperkinetischen Störungen bei Kindern, Jugendlichen und Erwachsenen, 2. Aufl., Seite 215

  55. Zigmond, Hastings, Abercrombie (1992): Neurochemical Responses to 6‐Hydroxydopamine and L‐Dopa Therapy: Implications for Parkinson’s Diseasea. Annals of the New York Academy of Sciences, 648: 71-86. doi:10.1111/j.1749-6632.1992.tb24525.x

  56. Zhang, Tarazi, Baldessarini (2001): Role of Dopamine D4 Receptors in Motor Hyperactivity Induced by Neonatal 6-Hydroxydopamine Lesions in Rats; Neuropsychopharmacology (2001) 25, 624–632. doi:10.1016/S0893-133X(01)00262-7

  57. Hässler, Irmisch: Biochemische Störungen bei Kindern mit AD(H)S, Seite 87, in Steinhausen (Hrsg.) (2000): Hyperkinetische Störungen bei Kindern, Jugendlichen und Erwachsenen, 2. Aufl., Kohlhammer

  58. Scheidtmann (2010): Bedeutung der Neuropharmakologie für die Neuroreha – Wirkung von Medikamenten auf Motivation und Lernen; neuroreha 2010; 2(2): 80-85; DOI: 10.1055/s-0030-1254343

  59. Solanto (1998): Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration; Behav Brain Res. 1998 Jul;94(1):127-52.

  60. Pomerleau, Downey, Stelson, Pomerleau (1995): Cigarette Smoking in Adult Patients Diagnosed with Attention Deficit Hyperactivity Disorder; journal of Substance Abuse, 7,373-378 (1995) BRIEF REPORT

  61. Kilgus (2007):Selbstregulation der langsamen kortikalen Potentiale bei Kindern mit und ohne ADHS (Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung) – Eine Pilotstudie -. Dissertation, Seite 3

  62. Pontieri, Tanda, Orzi, Chiara (1996): Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature. 1996 Jul 18;382(6588):255-7.

  63. Chishti, Fisher, Seegal (1996): Aroclors 1254 and 1260 reduce dopamine concentrations in rat striatal slices. Neurotoxicology. 1996 Fall-Winter;17(3-4):653-60.

  64. Koob, Le Moal (2001): Drug addiction, dysregulation of reward, and allostasis; Neuropsychopharmacology. 2001 Feb;24(2):97-129, zitiert nach Riederer, Laux (2009): Neuro-Psychopharmaka. Ein Therapie-Handbuch: Band 6: Notfalltherapie, Antiepileptika, Psychostimulantien, Suchttherapeutika und sonstige Psychopharmaka, Springer-Verlag, Seite 306

  65. Trott, Wirth (2000): die Pharmakotherapie der hyperkinetischen Störungen; in: Steinhausen (Herausgeber) hyperkinetischen Störungen bei Kindern, Jugendlichen und Erwachsenen, 2. Aufl., Seite 214, mwNw.

  66. https://de.wikipedia.org/wiki/Levodopa

  67. Cossu (2014): Therapeutic options to enhance coma arousal after traumatic brain injury: State of the art of current treatments to improve coma recovery; British Journal of Neurosurgery; Volume 28, 2014 – Issue 2 Pages 187-198; http://dx.doi.org/10.3109/02688697.2013.841845

  68. Karkhanis, Rose, Weiner, Jones (2016): Early-Life Social Isolation Stress Increases Kappa Opioid Receptor Responsiveness and Downregulates the Dopamine System. Neuropsychopharmacology. 2016 Aug;41(9):2263-74. doi: 10.1038/npp.2016.21.

  69. Chang, Grace (2013): Amygdala β-noradrenergic receptors modulate delayed downregulation of dopamine activity following restraint. J Neurosci. 2013 Jan 23;33(4):1441-50. doi: 10.1523/JNEUROSCI.2420-12.2013.

  70. Stahl (2013): Stahl’s essential psychopharmacology, 4. Ausgabe, Chapter 12: Attention deficit hyperactivity disorder and its treatment, Seite 488

  71. Rensing, Koch, Rippe, Rippe (2006): Der Mensch im Stress; Psyche, Körper, Moleküle; Elsevier Spektrum (heute: Springer), Kapitel 4: neurobiologische Grundlagen von Stressreaktionen, Seite 90

  72. Finlay, Zigmond (1997): The effects of stress on central dopaminergic neurons: possible clinical implications. Neurochem Res. 1997 Nov;22(11):1387-94.

  73. Steckler, Kalin, Reul (2005): Handbook of Stress and the Brain, Teil 1; Elsevier, Seite 624 f

  74. Abercrombie, Keefe, DiFrischia, Zigmond (1989): Differential Effect of Stress on In Vivo Dopamine Release in Striatum, Nucleus Accumbens, and Medial Frontal Cortex. Journal of Neurochemistry, 52: 1655–1658; doi:10.1111/j.1471

  75. Roth, Tam, Ida, Yang, Deutch (1988), Stress and the Mesocorticolimbic Dopamine Systemsa. Annals of the New York Academy of Sciences, 537: 138–147. doi:10.1111/j.1749-6632.1988.tb42102.x

  76. Pani, Porcella, Gessa (2000): The role of stress in the pathophysiology of the dopaminergic system; Molecular Psychiatry 5, 14–21 (2000); doi:10.1038/sj.mp.4000589

  77. Stalnaker, Berridge (2003): AMPA receptor stimulation within the central nucleus of the amygdala elicits a differential activation of central dopaminergic systems. Neuropsychopharmacology. 2003 Nov;28(11):1923-34

  78. Horger, Roth (1996): The Role of Mesoprefrontal Dopamine Neurons in Stress; Critical Reviews in Neurobiology DOI: 10.1615/CritRevNeurobiol.v10.i3-4.60, pages 395-418

  79. Bliss, Ailion, Zwanziger (1968): Metabolism of norepinephrine, serotonin and dopamine in rat brain with stress. J Pharmacol Exp Ther 164:122–134.

  80. Goldstein, Rasmusson, Bunney, Roth (1996): Role of the Amygdala in the Coordination of Behavioral, Neuroendocrine, and Prefrontal Cortical Monoamine Responses to Psychological Stress in the Rat; Journal of Neuroscience 1 August 1996, 16 (15) 4787-4798

  81. Kozicz, T. (2002), Met-enkephalin immunoreactive neurons recruited by acute stress are innervated by axon terminals immunopositive for tyrosine hydroxylase and dopamine-α-hydroxylase in the anterolateral division of bed nuclei of the stria terminalis in the rat. European Journal of Neuroscience, 16: 823–835. doi:10.1046/j.1460-9568.2002.02129.x

  82. Brake, Sullivan, Gratton (2000): Perinatal Distress Leads to Lateralized Medial Prefrontal Cortical Dopamine Hypofunction in Adult Rats; Journal of Neuroscience 15 July 2000, 20 (14) 5538-5543

  83. Cabib, Puglisi-Allegra (1996): Stress, depression and the mesolimbic dopamine system; Psychopharmacology; December 1996, Volume 128, Issue 4, pp 331–342

  84. Spencer, Ebner, Day (2004): Differential involvement of rat medial prefrontal cortex dopamine receptors in modulation of hypothalamic- pituitary-adrenal axis responses to different stressors, European journal of neuroscience, vol. 20, no. 4, pp. 1008-1016, doi: 10.1111/j.1460-9568.2004.03569.x.

  85. Isovich, Mijnster, Flügge, Fuchs (2000): Chronic psychosocial stress reduces the density of dopamine transporters. Eur J Neurosci. 2000 Mar;12(3):1071-8.

  86. Flügge, van Kampen, Mijnster (2004): Perturbations in brain monoamine systems during stress. Cell Tissue Res. 315:1-14.

  87. Fuchs, Flügge (2004): Psychosozialer Stress verändert das Gehirn, Neuroforum 2/04, 195

  88. Favoretto, Nunes, Macedo, Lopes, Quadros (2020): Chronic social defeat stress: Impacts on ethanol-induced stimulation, corticosterone response, and brain monoamine levels. J Psychopharmacol. 2020 Jan 22:269881119900983. doi: 10.1177/0269881119900983. PMID: 31965898.

  89. Kawahara, Kawahara, Westerink (1999): Comparison of effects of hypotension and handling stress on the release of noradrenaline and dopamine in the locus coeruleus and medial prefrontal cortex of the rat; Naunyn-Schmiedeberg’s Archives of Pharmacology; July 1999, Volume 360, Issue 1, pp 42–49

  90. Cenci, M. A., Campbell, K., Wictorin, K. and Björklund, A. (1992), Striatal c-fos Induction by Cocaine or Apomorphine Occurs Preferentially in Output Neurons Projecting to the Substantia Nigra in the Rat. European Journal of Neuroscience, 4: 376–380. doi:10.1111/j.1460-9568.1992.tb00885.x, zitiert nach Steckler, Kalin, Reul (2005): Handbook of Stress and the Brain, Teil 1; Elsevier, Seite 624 f

  91. Steckler, Kalin, Reul (2005): Handbook of Stress and the Brain, Teil 1; The Neurobiology of Stress, Volume 15; Elsevier, Seite 624 f

  92. Puglisi-Allegra, Casolini, Angelucci (1991): Changes in brain dopamine and acetylcholine release during and following stress are independent of the pituitary-adrenocortical axis; Brain Research, Volume 538, Issue 1, 4 January 1991, Pages 111-117; https://doi.org/10.1016/0006-8993(91)90384-8

  93. Deutch, Roth (1991): Chapter 19 The determinants of stress-induced activation of the prefrontal cortical dopamine system; Progress in Brain Research, Volume 85, 1991, Pages 367-403; https://doi.org/10.1016/S0079-6123(08)62691-6, zitiert nach Steckler, Kalin, Reul (2005): Handbook of Stress and the Brain, Teil 1; Elsevier, Seite 624 f

  94. Deutch, Roth (1991): Chapter 19 The determinants of stress-induced activation of the prefrontal cortical dopamine system; Progress in Brain Research, Volume 85, 1991, Pages 367-403; https://doi.org/10.1016/S0079-6123(08)62691-6, zitiert nach Steckler, Kalin, Reul (2005): Handbook of Stress and the Brain, Teil 1; Elsevier, Seite 624 f

  95. Berridge et al (1999), zitiert nach Steckler, Kalin, Reul (2005): Handbook of Stress and the Brain, Teil 1; Elsevier, Seite 811

  96. Anderson, Teicher (1999), Serotonin laterality in amygdala predicts performance in the elevated plus maze in rats, NeuroReport: November 26th, 1999 – Volume 10 – Issue 17 – p 3497–3500

  97. Carlson et al (1993), zitiert nach Steckler, Kalin, Reul (2005): Handbook of Stress and the Brain, Teil 1; Elsevier, Seite 811

  98. Morrow, Gibson, Bagovich, Stein, Condray, Scott (2000): Increased Incidence of Anxiety and Depressive Disorders in Persons With Organic Solvent Exposure; Psychosomatic Medicine: November 2000 – Volume 62 – Issue 6 – p 746-750, zitiert nach Steckler, Kalin, Reul (2005): Handbook of Stress and the Brain, Teil 1; Elsevier, Seite 624 f

  99. Kawahara, Kawahara, Westerink (1999): Comparison of effects of hypotension and handling stress on the release of noradrenaline and dopamine in the locus coeruleus and medial prefrontal cortex of the rat; Naunyn-Schmiedeberg’s Archives of Pharmacology; July 1999, Volume 360, Issue 1, pp 42–49

  100. Goldstein, Rasmusson, Bunney, Roth (1994) The NMDA glycine site antagonist (+)-HA-966 selectively regulates conditioned stress-induced metabolic activation of the mesoprefrontal cortical dopamine but not serotonin systems: a behavioral, neuroendocrine, and neurochemical study in the rat. J Neurosci 14:4937–4950.

  101. Feenstra, Teske, Botterblom, Bruin (1999): Dopamine and noradrenaline release in the prefrontal cortex of rats during classical aversive and appetitive conditioning to a contextual stimulus: interference by novelty effects. Neurosci Lett. 1999 Sep 17;272(3):179-82.

  102. Stahl (2013): Stahl’s Essential Psychopharmacology, 4. Auflage, Chapter 12: Attention deficit hyperactivity disorder and its treatment, Seite 472

  103. Stahl (2013): Stahl’s Essential Psychopharmacology, 4. Auflage, Chapter 12: Attention deficit hyperactivity disorder and its treatment, Seite 476

  104. Stahl (2013): Stahl’s Essential Psychopharmacology, 4. Auflage, Chapter 12: Attention deficit hyperactivity disorder and its treatment, 474

  105. Stahl (2013): Stahl’s Essential Psychopharmacology, 4. Auflage, Seite 472, Chapter 12: Attention deficit hyperactivity disorder and its treatment, 476

  106. Sugama, Takenouchi, Hashimoto, Ohata, Takenaka, Kakinuma (2019): Stress-induced microglial activation occurs through β-adrenergic receptor: noradrenaline as a key neurotransmitter in microglial activation. J Neuroinflammation. 2019 Dec 17;16(1):266. doi: 10.1186/s12974-019-1632-z. PMID: 31847911; PMCID: PMC6916186.

  107. Tennes, Kreye, Avitable, Wells (1986): Behavioral correlates of excreted catecholamines and cortisol in second grade children. J Am Acad Child Psychiatry 25:764–770

  108. Chaouloff (2000): Serotonin, stress and corticoids; Journal of Psychopharmacology, Volume: 14 issue: 2, page(s): 139-151, https://doi.org/10.1177/026988110001400203

  109. Chaouloff, Berton, Mormède (1999): Serotonin and Stress, Neuropsychopharmacology, Volume 21, Issue 2, Supplement 1, 1999, Pages 28S-32S, ISSN 0893-133X, https://doi.org/10.1016/S0893-133X(99)00008-1.

  110. Quellen hierzu bei den jeweiligen Neurotransmittern / Hormonen

  111. Grandjean, Corcoba, Kahn, Upton, Deneris, Seifritz, Helmchen, Mann, Rudin, Saab (2019): A brain-wide functional map of the serotonergic responses to acute stress and fluoxetine. Nat Commun. 2019 Jan 21;10(1):350. doi: 10.1038/s41467-018-08256-w.

  112. Murnane (2019): Serotonin 2A receptors are a stress response system: implications for post-traumatic stress disorder. Behavioural Pharmacology [09 Jan 2019]; PMID:30632995; DOI: 10.1097/FBP.0000000000000459

  113. Chen, Wang, Zhang, Chu, Mou, Chen (2019): The effects of glucocorticoids on depressive and anxiety-like behaviors, mineralocorticoid receptor-dependent cell proliferation regulates anxiety-like behaviors, Behavioural Brain Research, 2019, ISSN 0166-4328, https://doi.org/10.1016/j.bbr.2019.01.026.

  114. Keeney, Jessop, Harbuz, Marsden, Hogg, Blackburn‐Munro (2006): Differential Effects of Acute and Chronic Social Defeat Stress on Hypothalamic‐Pituitary‐Adrenal Axis Function and Hippocampal Serotonin Release in Mice. Journal of Neuroendocrinology, 18: 330-338. doi:10.1111/j.1365-2826.2006.01422.x

  115. Liu, Aghajanian (2008): Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: Role of corticosterone-mediated apical dendritic atrophy; Proceedings of the National Academy of Sciences Jan 2008, 105 (1) 359 364; DOI:10.1073/pnas.0706679105

  116. Kawahara, Yoshida, Yokoo, Nishi, Tanaka (1993): Psychological stress increases serotonin release in the rat amygdala and prefrontal cortex assessed by in vivo microdialysis, Neuroscience Letters, Volume 162, Issues 1–2, 1993, Pages 81-84, ISSN 0304-3940, https://doi.org/10.1016/0304-3940(93)90565-3.

  117. Korte‐Bouws, G. A., Korte, S. M., De Kloet, E. R. and Bohus, B. (1996), Blockade of Corticosterone Synthesis Reduces Serotonin Turnover in the Dorsal Hippocampus of the Rat as Measured by Microdialysis. Journal of Neuroendocrinology, 8: 877-881. doi:10.1046/j.1365-2826.1996.05389.x

  118. Evrard, Barden, Hamon, Adrien (2006): Glucocorticoid Receptor-Dependent Desensitization of 5-HT1A Autoreceptors by Sleep Deprivation: Studies in GR-i Transgenic Mice. Sleep. 29. 31-6. 10.1093/sleep/29.1.31.

  119. Le Poul, Laaris, Hamon, Lanfumey (1997): Fluoxetine‐induced desensitization of somatodendritic 5‐HT1A autoreceptors is independent of glucocorticoid(s). Synapse, 27: 303-312. doi:10.1002/(SICI)1098-2396(199712)27:4<303::aid-syn4>3.0.CO;2-G

  120. Popova, Naumenko (2019): Neuronal and behavioral plasticity: the role of serotonin and BDNF systems tandem. Expert Opin Ther Targets. 2019 Jan 21. doi: 10.1080/14728222.2019.1572747.

  121. Hood, Hince, Robinson, Cirillo, Christmas, Kaye (2006): Serotonin regulation of the human stress response, Psychoneuroendocrinology, Volume 31, Issue 9, 2006, Pages 1087-1097, ISSN 0306-4530, https://doi.org/10.1016/j.psyneuen.2006.07.001.

  122. Yehuda, Meyer (1984): A Role for Serotonin in the Hypothalamic-Pituitary-Adrenal Response to Insulin Stress. Neuroendocrinology 1984;38:25-32. doi: 10.1159/000123861

  123. Seedat, Stein, Ziervogel, Middleton, Kaminer, Emsley, Rossouw (2002): Comparison of Response to a Selective Serotonin Reuptake Inhibitor in Children, Adolescents, and Adults with Posttraumatic Stress Disorder; Journal of Child and Adolescent Psychopharmacology 2002 12:1, 37-46; n = 38

  124. Reimold, Knobel, Rapp, Batra, Wiedemann, Ströhle, Zimmer, Schönknecht, Smolka, Weinberger, Goldman, Machulla, Bares (2011): Central serotonin transporter levels are associated with stress hormone response and anxiety; Psychopharmacology, February 2011, Volume 213, Issue 2–3, pp 563–572, n = 40

  125. Way, Taylor (2010): The Serotonin Transporter Promoter Polymorphism Is Associated with Cortisol Response to Psychosocial Stress, Biological Psychiatry, Volume 67, Issue 5, 2010, Pages 487-492, ISSN 0006-3223, https://doi.org/10.1016/j.biopsych.2009.10.021. n = 182

  126. Mueller, Brocke, Fries, Lesch, Kirschbaum (2010): The role of the serotonin transporter polymorphism for the endocrine stress response in newborns, Psychoneuroendocrinology, Volume 35, Issue 2, 2010, Pages 289-296, ISSN 0306-4530, https://doi.org/10.1016/j.psyneuen.2009.07.002. n = 126

  127. Mueller, Armbruster, Moser, Canli, Lesch, Brocke, Kirschbaum (2011): Interaction of Serotonin Transporter Gene-Linked Polymorphic Region and Stressful Life Events Predicts Cortisol Stress Response; Neuropsychopharmacology volume 36, pages 1332–1339, 2011, n = 320

  128. Ouellet-Morin, Wong, Danese, Pariante, Papadopoulos, Mill, Arseneault (2013): Increased serotonin transporter gene (SERT) DNA methylation is associated with bullying victimization and blunted cortisol response to stress in childhood: a longitudinal study of discordant monozygotic twins; Psychological Medicine; Volume 43, Issue 9 September 2013 , pp. 1813-1823; https://doi.org/10.1017/S0033291712002784

  129. Christoffersen (2019): Violent crime against children with disabilities: A nationwide prospective birth cohort-study. Child Abuse Negl. 2019 Sep 24;98:104150. doi: 10.1016/j.chiabu.2019.104150.

  130. Canli, Qiu, Omura, Congdon, Haas, Amin, Herrmann, Constable, Lesch (2006): Neural correlates of epigenesis; Proc Natl Acad Sci U S A. 2006 Oct 24; 103(43): 16033–16038. doi: 10.1073/pnas.0601674103; PMCID: PMC1592642; PMID: 17032778

  131. Caspi, Sugden, Moffitt, Taylor, Craig, Harrington, McClay, Mill, Martin, Braithwaite, Poulton (2003): Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003 Jul 18;301(5631):386-9.

  132. Alexander, Kuepper, Schmitz, Osinsky, Kozyra, Hennig (2009): Gene-environment interactions predict cortisol responses after acute stress: implications for the etiology of depression. Psychoneuroendocrinology. 2009 Oct;34(9):1294-303. doi: 10.1016/j.psyneuen.2009.03.017.

Diese Seite wurde am 12.01.2022 zuletzt aktualisiert.