1. Pränatale Stressoren als ADHS-Umwelt-Ursachen
Autor: Ulrich Brennecke
Review (Juni 2024): Dipl.-Psych. Waldemar Zdero
Bereits vor der Geburt kann das Ungeborene durch toxische Einflüsse oder Krankheiten geschädigt werden.
Viele Gifte und Krankheiten, die das ADHS-Risiko des Nachwuchses erhöhen, tun dies, indem sie das dopaminerge System beeinflussen. Gifte können zudem bereits vor der Zeugung durch epigenetische Vermittlung das ADHS-Risiko erhöhen.
Psychischer und körperlicher Stress (Gifte, Krankheiten) wirken grundsätzlich vergleichbar auf die Stresssysteme (HPA-Achse, Autonomes Nervensystem und andere).
Die angegebenen %-Werte für eine mögliche ADHS-Risikoerhöhung sind ein Indiz für die Größenordnung des Einflusses der jeweiligen Belastung. Bei Einträgen ohne %-Angabe sind uns keine Werte bekannt.
Der Konsum von Nikotin, Alkohol oder stärkeren Drogen während der Schwangerschaft erhöht das Risiko für ADHS beim Nachwuchs. Nikotin erhöht das Risiko sogar, wenn die Eltern nur vor der Zeugung geraucht haben.
Eine weitere Risikoquelle sind Gifte, mit denen die Mutter in der Schwangerschaft in Berührung kommt. Hierunter finden sich Pflanzenschutzmittel wie Organophosphate oder Pyrethroide und Chemikalien wie Blei, Cadmium, Thallium, Bisphenole, polychlorierte Biphenyle oder polyzyklische aromatische Kohlenwasserstoffe.
Luftverschmutzung, insbesondere Feinstaub und Stickstoffoxide, können ebenfalls das Risiko für ADHS erhöhen.
Ein hoher Salzkonsum der Mutter während der Schwangerschaft kann die Stressempfindlichkeit des Ungeborenen erhöhen.
Auch verschiedene Gesundheitsfaktoren der Mutter, wie Krankheiten, Übergewicht, Stress, Infektionen und hormonelle Störungen bei ihr, stehen mit einem erhöhten ADHS-Risiko beim Kind in Verbindung. Besonders Schilddrüsenhormone sollten genau kontrolliert werden. Ein höherer Omega-3-Fettsäure-Spiegel beim Neugeborenen könnte das Risiko und die Schwere von ADHS sowie Autismusspektrumsstörungen verringern. Ein Vitamin D3-Mangel während der Schwangerschaft und nach der Geburt ist mit dopaminergen Fehlentwicklungen des Gehirns verbunden.
Eine hohe Cortisol-Exposition des Fötus oder Neugeborenen, durch eine Cortisolgabe oder durch Stress der Mutter in der Schwangerschaft, kann ebenfalls das ADHS-Risiko erhöhen.
Dass viele Medikamente in der Schwangerschaft ein Risiko für das Ungeborene darstellen können, ist bekannt. In Bezug auf ADHS sind insbesondere Paracetamol (Acetaminophen), SSRI (Antidepressiva), β-2-Adrenalin-Rezeptor-Agonisten, Pregabalin, Antibiotika und Valproat in der Schwangerschaft relevant.
Schließlich beeinflussen Schwangerschaftsumstände wie der Erstgeborenenstatus oder besonders kurze oder lange Abstände zur vorigen Schwangerschaft das ADHS-Risiko des Kindes.
Höherer pränataler Stress schien nur bei Personen mit einer höheren genetischen Anfälligkeit für ADHS (mit einem höheren polygenen Risk Score für ADHS) eine langsamere Gehirnentwicklung während der Adoleszenz zu fördern, während pränataler Stress bei Personen mit einer geringeren genetischen Anfälligkeit für ADHS eine schnellere Gehirnentwicklung begünstigte.1
Bei einigen dieser Risikofaktoren scheinen Geschlechtsunterschiede zu bestehen.
Die nachfolgende Sammlung ist zwar umfangreich, dennoch dürften noch etliche weitere Umstände mit einem erhöhten ADHS-Risiko einhergehen.
Die verschiedenen Faktoren stellen jeweils nur Teile eines vielschichtigen Risikomosaiks dar und führen nicht automatisch zu ADHS.
Die %-Werte geben die mögliche ADHS-Risikoerhöhung durch die jeweilige Ursache an.
Wir haben begonnen, die möglichen Wirkpfade zu benennen, über die Umweltfaktoren ADHS verursachen können.
- 1.1. Gifte vor der Zeugung als Risiken für ADHS - epigenetische Vererbung
- 1.2. Gifte und Schadeinwirkungen während der Schwangerschaft (bis + 778 %)
- 1.2.1. Alkohol während der Schwangerschaft (+ 778 %)
- 1.2.2. Nikotinkonsum der Mutter in Schwangerschaft (+ 58 % bis + 378 %)
- 1.2.3. Passivrauchen während der Schwangerschaft
- 1.2.4. Drogenkonsum der Mutter während der Schwangerschaft (bis + 200 %)
- 1.2.5. Polyzyklische aromatische Kohlenwasserstoffe (PAK, PAH) (+ 99 bis 157 %)
- 1.2.6. Exposition der Mutter gegenüber nichtionisierender Magnetfeldstrahlung während der Schwangerschaft (+ 100 %)
- 1.2.7. Luftverschmutzung in der Schwangerschaft (bis + 26 %)
- 1.2.8. Polychlorierte Biphenyle / Polychlorierte Biphenylether (+ 23 %)
- 1.2.9. Cadmium während der Schwangerschaft (+ 22 % bei Mädchen)
- 1.2.10. Bleidisposition während der Schwangerschaft
- 1.2.11. Thallium während der Schwangerschaft
- 1.2.13. Hoher Salzkonsum während der Schwangerschaft
- 1.2.13. Pestizide in der Schwangerschaft
- 1.2.14. Bisphenole in der Schwangerschaft
- 1.2.15. Phthalate in der Schwangerschaft
- 1.2.16. Perfluoralkylverbindungen (PFAS) in der Schwangerschaft
- 1.2.17. Dioxin-Exposition während der Schwangerschaft
- 1.2.18. Pränatale Schwefeldioxid-Exposition
- 1.2.19. Polybromierte Diphenylether
- 1.2.20. Niedriger Urin-Fluoridgehalt der Mutter
- 1.2.21. Mangan
- 1.3. Krankheiten der Mutter / der Eltern (bis + 310 %)
- 1.3.1. Erhöhte oder verringerte Thyroxinwerte
- 1.3.2. Schweres Übergewicht der Mutter vor oder in Schwangerschaft (+ 14 % bis 280 %)
- 1.3.3. Chemikalien- / Medikamentenunverträglichkeit (+ 110 % bis 130 %; ASS + 201 % bis 470 %)
- 1.3.4. Präeklampsie (Gestose) in der Schwangerschaft (+ 30 % bis + 188 %)
- 1.3.5. Itrahepatische Cholestase (ICP) in der Schwangerschaft (+ 7 % bis + 162 %)
- 1.3.6. PTBS (PTSD) in der Schwangerschaft (+ 132 %)
- 1.3.7. Psychischer Stress der Mutter in der Schwangerschaft (+ 72 % bis + 100 %; mit 5HTTLPR + 800 %)
- 1.3.8. Polyzystisches Ovarialsyndrom (PCOS) in der Schwangerschaft (+ 31 bis + 95 % bei Jungen)
- 1.3.9. Ungesunde Ernährung der Mutter in der Schwangerschaft (+ 60 %)
- 1.3.10. Fieber der Mutter in der Schwangerschaft (+ 31 % bis + 164 %)
- 1.3.11. Verringertes C-reaktives Protein (CRP) (+ 92 %)
- 1.3.12. Systemischer Lupus erythematosus (SLE) (+ 60 %)
- 1.3.13. Asthma der Eltern in- und außerhalb der Schwangerschaft (+ 13 % bis + 41 %)
- 1.3.14. Diabetes eines Elternteils; Diabetes in der Schwangerschaft (+ 40 %)
- 1.3.15. Migräne der Eltern (+ 37 %)
- 1.3.16. Anämie (Blutarmut) der Mutter in der Schwangerschaft (+ 31 %)
- 1.3.17. Infektionen der Mutter in der Schwangerschaft
- 1.3.18. Fetales Entzündungssyndrom (FIRS) (+ 27 %)
- 1.3.19. Unstillbarer Brechreiz (Hyperemesis gravidarum) (+ 16 %)
- 1.3.20. Mineralstoff- und Vitaminmangel in der Schwangerschaft
- 1.3.21. Depression der Eltern vor / während / nach der Schwangerschaft
- 1.3.22. Bluthochdruck während der Schwangerschaft
- 1.3.23. Schlafmangel in der Schwangerschaft
- 1.3.24. Testosteron in der Schwangerschaft
- 1.3.25. Entzündungen während der Schwangerschaft
- 1.4. Medikamente der Mutter in der Schwangerschaft als ADHS-Risiko (bis + 250 %)
- 1.4.1. Paracetamol (Acetaminophen) in der Schwangerschaft (+ 37 % bis + 250 %)
- 1.4.2. SSRI, Antidepressiva in der Schwangerschaft (0 % bis + 63 %)
- 1.4.3. β-2-Adrenalin-Rezeptor-Agonisten in der Schwangerschaft (+ 30 %)
- 1.4.4. Pregabalin in der Schwangerschaft (+ 29 %)
- 1.4.5. Antibiotika in der Schwangerschaft (+ 14 %)
- 1.4.6. Antiepiletika: Valproat in der Schwangerschaft (+ 12 %)
- 1.4.7. Corticoide in der Schwangerschaft
- 1.4.8. Valproinsäure in der Schwangerschaft
- 1.4.9. Penicillineinnahme in der Schwangerschaft
- 1.4.10. Keine Risikoerhöhung durch NSAIDs, normalen Koffeinkonsum, Benzodiazepine
- 1.5. Sonstige Schwangerschaftsumstände (bis + 30 %)
- 1.6. Schwangerschaftsumstände ohne Einfluss auf ADHS
- 1.7 Präventive Faktoren
1.1. Gifte vor der Zeugung als Risiken für ADHS - epigenetische Vererbung
1.1.1. Nikotinkonsum eines Elternteils vor der Zeugung (+ 259 %)
Kinder, deren Väter vor der Schwangerschaft geraucht haben, hatten ein 2,59-faches ADHS-Risiko, im Vergleich zu Kindern, deren Väter nie geraucht haben.
Kinder von Eltern, die vor der Schwangerschaft dem Rauchen oder Passivrauchen ausgesetzt waren, hatten das 1,96-fache A(D)HS-Risiko.
Kinder, deren Eltern sowohl vor als auch während der Schwangerschaft Tabakrauch ausgesetzt waren, hatten ein 2.01-faches ADHS-Risiko.2
Wirkpfad: Epigenetik
Nikotinkonsum eines Elternteils vor der Zeugung: epigenetische Vererbung von Nikotinschäden bewirkt ADHS-Symptome bei Nachwuchs über mehrere Generationen
Mäuse, deren Väter oder Mütter vor der Zeugung chronisch Nikotin ausgesetzt waren, zeigten Hyperaktivität, eine beeinträchtigte Nikotin-induzierte motorische Sensibilisierung und verringerte Dopamin- und Noradrenalinspiegel im Striatum und PFC.34
Nikotinkonsum des Vaters oder der Mutter vor der Zeugung verursacht beim Nachwuchs epigenetische Veränderungen
- des Dopamin D2-Rezeptors.5
- des Dopamintransporters (DAT) m Striatum und mPFC6
- veränderte Expression und Dysfunktion von nikotinischen Acetylcholinrezeptoren (nAChRs)6
- Hypersensitivität auf nikotin-induzierte nAChR-vermittelte Dopaminfreisetzung6
Die Kinder der ersten und zweiten Generation zeigten ADHS-typische Beeinträchtigungen:
- Generation:
- signifikant erhöhte spontane Bewegungsaktivität (Hyperaktivität) (Männchen und Weibchen)56
- die verringerte DAT-Expression bewirkt erhöhte Dopaminspiegel im Striatum, was mittels Aktivierung von D2-Rezeptoren die Dephosphorylierung von AKT bewirkte, was zu einer verstärkten Aktivierung von GSK3α/β führte und letztlich Hyperaktivität in den Nachkommen der Mäuse verursachte.7
- risikofreudiges Verhalten6
- signifikante Defizite beim Umkehrlernen (Männchen und Weibchen)5
- signifikante Aufmerksamkeitsdefizite (Männchen)5
- signifikant verringerter Monoamingehalt im Gehirn (Männchen)5
- verringerte Dopaminrezeptor-mRNA-Expression (Männchen)5
- erhöhte Nikotinpräferenz6
- Aktivitätsrhythmus verändert6 Anmerkung: Dies könnte eine Verbindung zum bei ADHS veränderten circadianene Rhythmus darstellen
- Generation:
- signifikante Defizite beim Umkehrlernen (Männchen)5
- Hyperaktivität6
- risikofreudiges Verhalten6
- erhöhte Nikotinpräferenz6
- Aktivitätsrhythmus verändert6
Es ist zu vermuten, dass die Mechanismen denen bei Menschen entsprechen.
1.1.2. Penicillineinnahme bis 2 Jahre vor der Zeugung
Eine Einnahme von Penicillin durch die Mutter erhöhte selbst dann noch das ADHS-Risiko des Kindes, wenn die Einnahme 2 Jahre vor der Schwangerschaft erfolgte. Eine mehrfache Penicillin-Einnahme erhöhte das ADHS-Risiko zusätzlich.9
Möglicher Wirkpfad: Darmmikrobiom
Antibiotika beeinflussen das Darmmikrobiom. Das Darmmikrobiom wird von der Mutter bei der vaginalen Geburt und beim Stillen (insbesondere in den ersten drei Monaten) an das Neugeborene weitergegeben. Siehe dort.
1.2. Gifte und Schadeinwirkungen während der Schwangerschaft (bis + 778 %)
Nachgewiesen sind toxische Wirkungen für Ungeborene für:
1.2.1. Alkohol während der Schwangerschaft (+ 778 %)
Etwa 5 % der Kinder in den USA sollen an FASD leiden, also durch Alkoholkonsum der Mutter in der Schwangerschaft geschädigt sein.10
Die ganz überwiegende Anzahl der Studien stellt fest, dass Alkoholkonsum der Mutter in der Schwangerschaft die ADHS-Wahrscheinlichkeit für die Kinder signifikant erhöht.1112 bis zu 8,78-fach,13 Ebenso sind Aufmerksamkeitsprobleme erhöht.14
Eine Kombination von Alkohol und Stress bei der Mutter in der Schwangerschaft erhöhte bei männlichen Ratten die Wahrscheinlichkeit, ein weibliche(res) Sexualverhalten auszubilden.15
Kinder mit FAS (Fetales Alkohol Syndrom) hatten zu 47,2 % auch ADHS.16
Es bestehen Hinweise darauf, dass Alkoholkonsum der Mutter in der Schwangerschaft oder während der Stillzeit erhebliche Auswirkungen auf das Dopaminsystem des Kindes hat.17181920 Ebenso ist die Regulation der Neurotransmitter Serotonin21, Glutamat, Noradrenalin, Acetylcholin und Histamin betroffen.22 23
Einzelne Studien fanden keinen Zusammenhang zwischen:
- Alkoholkonsum in der Schwangerschaft und ADHS.2425
- Bingedrinking in der frühen Schwangerschaft und dem ADHS-Risiko der Kinder im Alter von 5 bis 19 Jahren.26
Eine Studie fand eine Korrelation zwischen Ethoxyessigsäure (einem von 6 untersuchten Abbauprodukt von Alkohol) im Urin der Mutter und Inhibitionsproblemen der Kinder.27
Eine Metastudie fand, dass Alkoholkonsum der Mutter von weniger als 70 g / Woche während der Schwangerschaft das ADHS-Risiko nicht erhöhte.28 Jungen waren durch Alkohol in der Schwangerschaft weniger gefährdet als Mädchen.
Neill et al beschäftigen sich mit der Differentialdiagnostik von ADHS und FASD (Fetal Alcohol Spectrum Disorder).29
1.2.2. Nikotinkonsum der Mutter in Schwangerschaft (+ 58 % bis + 378 %)
Vorgeburtliches Rauchen bewirkt ein erhöhtes ADHS-Risiko für den Nachwuchs30 auf das
- 4,78-fache (um 378 % erhöht)13
- 3,34-fache bei den 10 % am stärksten rauchenden Müttern31
- 2,7-fache (um 170 % erhöht)32
- 2,21-fache bei starker Nikotinbelastung (Cotininwert >50 ng/ml)31
- 1,75-fache bei starken Raucherinnen33
- 1,60-fache (um 60 % erhöht) im Gesamtschnitt der Raucherinnen33
- 1,58-fache (um 58 % erhöht)34
- 1,54-fache bei leichten Raucherinnen 33
- 1,50-fache, schon bei Passivrauchen, jedoch nur für Jungen35
- 1,50 fache (hier: Risiko von Hyperaktivitäts-/Impulsivitätssymptomen des Kindes)35
- 1,34-fache (OR) in einer Metaanalyse von k = 10 Studien mit n = 7.014; bezüglich CD und ODD fand sich ein OR von jeweils 2,1936
- 1,09-fache (OR), wenn sozioökonomischer Status der Mutter, das mütterliche Alter, die mütterliche Psychopathologie, das väterliche Alter, die väterliche Psychopathologie und das Geburtsgewicht des Kindes für das Gestationsalter berücksichtigt wurden
Weitere Studien fanden ebenfalls signifikant erhöhte Risikowerte.3738394404142
Kinder mit ADHS hatten häufiger Mütter, die während der Schwangerschaft geraucht hatten:
Das ADHS-Risiko von Kindern rauchender Mütter verringerte sich durch eine Aufgabe des Rauchens etwas:46
- Risiko insgesamt im Vergleich zu den Nachkommen von Nichtraucherinnen:
- ADHS: OR = 2,07 = 207 %, Lernbehinderung: OR = 1,93 = 193 %
- bei Aufgabe des Rauchens im ersten Trimester
- ADHS: OR = 1,72 = 172 %, Lernbehinderung: OR = 1,52 = 152 %
- bei Aufgabe des Rauchens im zweiten oder dritten Trimester
- ADHS: OR = 2,13 = 213 %, Lernbehinderung: OR = 1,82 = 182 %
- keine Aufgabe des Rauchens
- ADHS: OR = 2,17 = 217 %, Lernbehinderung: OR = 2,10 = 210 %
Lediglich zwei Studien (mit überlappenden Autoren){Rice, Langley, Woodford, Smith, Thapar (2018): Identifying the contribution of prenatal risk factors to offspring development and psychopathology: What designs to use and a critique of literature on maternal smoking and stress in pregnancy. Dev Psychopathol. 2018 Aug;30(3):1107-1128. doi: 10.1017/S0954579418000421.}}47, eine Studie mit einer kleinen Probandenzahl48 und eine Metastudie kamen zu einem abweichenden Ergebnis49, eine Studie fand eher schwache Hinweise.50
Wirkpfade:
Die meisten Experimente mit vorgeburtlicher Nikotinexposition zeigen eine Verringerung der Dopaminspiegel im PFC und Striatum. Unter bestimmten Umständen zeigten sich auch erhöhte Dopaminspiegel.51 ADHS ist neurophysiologisch eng mit verringerten Dopaminspiegeln im dlPFC (beeinträchtiges Arbeitsgedächtnis) und Striatum (beeinträchtigte Motivation und motorische Steuerung = Hyperaktivität) verbunden.
Davon zu unterscheiden ist Rauchen durch Betroffene – dies erhöht die Dopaminspiegel (zumindest im Striatum), da es die DAT verringert, die bei ADHS zu stark ausgeprägt sind und den Dopaminspiegel im Striatum verringern. Akutes Rauchen erhöht dadurch den Dopaminspiegel im Striatum.
Vorgeburtliches Rauchen in Verbindung mit bestimmten Genpolymorphismen erhöht die ADHS-Wahrscheinlichkeit noch stärker:
- Liegen keine genetischen Risiken vor, erhöht Rauchen der Mutter während der Schwangerschaft das ADHS-Risiko für das Kind um 20 bis 30 %.
- Die Risikogene allein erhöhen (wenn die Mutter während der Schwangerschaft nicht raucht) das Risiko um 20 bis 40 %.
- Treffen aber Risikogene und ein Rauchen der Mutter in der Schwangerschaft zusammen, erhöht sich das ADHS-Risiko des Kindes um ein Vielfaches:
Rauchen der Mutter während der Schwangerschaft verändert die Glutamat-NMDA-Rezeptoren im laterodorsalen Tegmentum des Nachwuchses.55 Eine weitere Studie fand ebenfalls Veränderungen der glutamatergen Signalübertragung im Hippocampus durch erhöhte Glutamatrezeptorexpression,56 was mit Lernproblemen, Aufmerksamkeitsproblemen und gesteigerter Impulsivität einherging.
Die proBDNF-Proteolyse ist durch ein Ungleichgewicht zwischen proBDNF und BDNF und die Herunterregulierung des proBDNF-Verarbeitungsenzyms Furin gestört. Die Aktivität des Glucocorticoidrezeptors ist durch eine verminderte relative nukleare GR-Lokalisierung verändert. Der basale Plasmacorticosteronspiegel ist verringert. Die HPA-Achse ist gestört. Dies betrifft den Nachwuchs selbst, aber auch dessen Kinder, wird also weitervererbt.57
Vorgeburtliche Nikotinexposition verringerte die Dopaminspiegel im mPFC des Nachwuchses von Nagetieren.58 Bei ADHS ist der Dopaminspiegel im PFC verringert.
Eine Untersuchung an Mäusen, deren Mutter während der Schwangerschaft Nikotin ausgesetzt wurde, fand Hinweise darauf, dass Nikotin während der Schwangerschaft verschiedene Folgen verursacht, die auch bei der Enkelgeneration fortbestanden, was auf eine epigenetische Vererblichkeit hinweist:59
- Defizite in der Expression der kortikostriatalen DNA-Methyltransferase 3A (DNMT3A)
- Downregulation des Methyl-CpG-bindenden Proteins 2 (MeCP2) in frontalen Cortizes und im Hippocampus
- Downregulation der Histon-Deacetylase 2 (HDAC2) in frontalen Cortizes und im Hippocampus
- Anomalien bei der HDAC2 (Ser394)-Phosphorylierung in frontalen Cortizes, im Striatum und im Hippocampus
- keine Veränderung der Expression der Ten-Eleven-Translokase-Methylcytosin-Dioxygenase 2 (TET2)
- keine Anomalien bei der MeCP2 (Ser421)-Phosphorylierung in frontalen Cortizes, im Striatum und im Hippocampus
Mütterliches Rauchen erhöht den fetalen Testosteronspiegel.60 Erhöhte pränatale Testosteronwerte sind ein Risikofaktor für ADHS. Mehr hierzu unter Geschlechtsunterschiede bei ADHS.
Mütterliches Rauchen war im Vergleich zu anderen Umweltursachen nur mit ADHS, aber nicht mit nur Autismus assoziiert. Eine psychiatrische Vorgeschichte der Eltern wies ähnliche Assoziationen mit allen Untergruppen auf. Ein Wohnen in der Stadt war am stärksten mit Autismus+ADHS und am wenigsten mit nur ADHS verbunden.61
Über 70 Millionen Frauen in der EU rauchen während der Schwangerschaft (Stand 2020).56
Möglicherweise könnten die Effekte von Nikotinkonsum der Mutter während der Schwangerschaft durch Stillen kompensiert werden.62
1.2.3. Passivrauchen während der Schwangerschaft
Bereits Passivrauchen, also eine passive Exposition der Mutter gegenüber Nikotinrauch in der Schwangerschaft, erhöht tendenziell die Risiken der Ungeborenen für spätere ADHS-Symptome.35
Ähnliche Ergebnisse fanden sich für die Verursachung von Dyspraxie (Developmental Coordination Disorder) durch Passivrauchen.63
Passivrauchen während der Schwangerschaft in Kombination mit mütterlichem Stress im 5. Lebensjahr des Kindes erhöhte das Risiko für Aufmerksamkeitsprobleme im 7. Lebensjahr.64
Eine Studie mit einer kleinen Probandenzahl fand keinen Hinweis auf eine Korrelation.48
1.2.4. Drogenkonsum der Mutter während der Schwangerschaft (bis + 200 %)
Bei Kindern, die vorgeburtlich multiplem Drogenkonsum der Mutter ausgesetzt waren und die danach in Heimen aufwuchsen, fand sich im Alter von 17 bis 22 Jahren das 3-fache Risiko von ADHS.65
Cannabiskonsum in der Schwangerschaft wird von mehreren Studien mit einem erhöhten Risiko für ADHS der Kinder assoziiert.66
Eine Metastudie fand eine relativ geringe Risikoerhöhung für ADHS durch Cannabiskonsum der Mutter in der Schwangerschaft um 13 %.67
1.2.5. Polyzyklische aromatische Kohlenwasserstoffe (PAK, PAH) (+ 99 bis 157 %)
Der pränatale Kontakt mit polyzyklischen aromatischen Kohlenwasserstoffen scheint die Schäden durch frühkindliche Stresseinwirkung zu verstärken und spätere Aufmerksamkeits- und Gedächtnisprobleme zu fördern.68 Eine Metastudie fand, dass 4 Studien eines Autors auf eine Erhöhung des Risikos von ADHS durch PAK um das 1,57-fache hindeuteten (OR 2,57), während die Gesamtzahl aller Studien auf ein verdoppeltes Risiko hindeuteten (OR 1,99), was aber nicht signifikant gewesen sei.69
Eine hohe pränatale PAK-Exposition korrelierte mit
- Aufmerksamkeitssymptomen70 nach DSM-IV (OR = 5,06)71. dosisabhängig72
- ADHS-Gesamtscore nach DSM-IV (OR = 3,37)7173
- Angst und Depression7074
1.2.6. Exposition der Mutter gegenüber nichtionisierender Magnetfeldstrahlung während der Schwangerschaft (+ 100 %)
Kinder, deren Mütter während der Schwangerschaft (bei einer 24-Stunden-Messung) am stärksten nichtionisierender Magnetfeld-Strahlung (“Elektro-Smog”) ausgesetzt waren,75
- zeigten ein verdoppeltes Risiko für ADHS (aHR 2,01)
- Die Fortdauer von ADHS über das 11. Lebensjahr hinaus korrelierte mehr als dreimal so häufig mit einer hohen Exposition der Mutter als eine Remission von ADHS bis zum 11. Lebensjahr (aHR 3,38).
- ADHS mit komorbiden immunbedingten Komorbiditäten (Asthma oder Neurodermitis / atopische Dermatitis) war 4,57 Mal so häufig mit hoher Exposition korreliert.
- ein Zusammentreffen von über das 11. Lebensjahr hinaus persistierendem ADHS und immunbedingten Komorbiditäten war 8,27 Mal häufiger mit Exposition verknüpft.
1.2.7. Luftverschmutzung in der Schwangerschaft (bis + 26 %)
Eine Studie fand Veränderungen in Bezug auf das Immunsystem des Nachwuchses durch Luftverschmutzung.76
Eine Untersuchung an ca. 43.000 Familien in Shenzen fand positive Korrelationen von ADHS ab dem 3. Lebensjahr mit während der Schwangerschaft bestehender Exposition gegenüber77
- Kochdämpfen
- Tabakrauch
- Dämpfen aus Hausrenovierungen
- Moskitospulen (abgebrannte Moskitopyramiden; insbesondere in Kombination mit Weihrauch-Rauch)
- Weihrauch-Rauch (insbesondere in Kombination mit Moskitoabwehrrauch)
Eine andere Studie fand keine Risikoerhöhung durch Luftverschmutzung in Bezug auf ADHS.78
Eine Metaanalyse fand, dass mehr Untersuchungen (ohne Schwangerschaftsbezug) einen Zusammenhang zwischen Luftverschmutzung und ADHS bejahten als ihn verneinten.79
1.2.7.1. Feinstaub (+ 26 %)
Eine Kohortenstudie an 425.736 Geburten zur pränatalen Feinstaubbelastung anhand von Satellitendaten fand, dass ein Anstieg der PM2,5-Konzentration um 10 μg/m³ während des ersten Trimesters das ADHS-Risiko um 26 % erhöhte und dass dieses bei PM2,5-Konzentrationen über 16 μg/m³ weiter anstieg.80
Luftverschmutzung durch Feinstaub in der Schwangerschaft korrelierte in einer Studie mit einem verringerten Volumen des Corpus callosum und einer Tendenz zu erhöhter Hyperaktivität.81 Eine weitere Studie fand einen Zusammenhang zwischen Feinstaub und ADHS bei geringer Feinstaubbelastung, während eine höhere Belastung schwerwiegendere Gehirnschäden verursachte.73
Bei Ratten führten eingeatmete Druckerpartikel zu 5-fach erhöhten Dopaminwerten, wobei diese wahrscheinlich durch eine erhöhte Synthese und nicht durch einen verringerten Abbau entstanden.82
Dieselabgaspartikel führten in Laborversuchen zu Funktionsbeeinträchtigungen von Dopamin-Neuronen. Eine pränatale Aufnahme mit der Atemluft bewirkte bei Mäusen:83
- im Striatum
- verringerten Dopaminumsatz
- verringerte Spiegel von Dopamin-Metaboliten
- in der Amygdala
- erhöhten Dopaminspiegel
- erhöhte Dopamin-Metaboliten-Spiegel
- im Nucleus accumbens
- erhöhte Dopamin-Spiegel
Verkehrs-Ultrafeinstaub in der Atemluft nach der Geburt bewirkte bei weiblichen Mäusen:83
- erhöhten Dopaminumsatz im Hippocampus
Vor- wie nachgeburtlich verringerten Feinstaub und gasförmige Schadstoffe bei Nagetieren die Expression von Oxytocin-Rezeptoren in Hippocampus84 und Hypothalamus, bei verringertem Pflegeverhalten als Mutter.85 Die Oxytocin- und Vasopressin-Kommunikation scheint durch endokrin wirksame Chemikalien gestört zu werden86, von denen viele in der Außenluft vorhanden sind.83
Feinstaub wirkt auch über das Darmmikrobiom. Das Darnmikrobiom wirkt wiederum - insbesondere via L. Reuteri - auf das Oxytocinsystem. Mehr hierzu unter Mikrobiota gegen ASS im Beitrag Darm-Hirn-Achse und ADHS
Da Partikel bis maximal 1000 Nanometer = 1 Mikrometer die Blut-Hirn-Schranke überwinden können (Mikroplastik bis 200 Nanometer87, Extrazelluläre Vesikel bis 1000 Nanometer - siehe Modulation von Neurotransmittern durch Mikrobiom im Beitrag Darm-Hirn-Achse und ADHS), dürfte PM10 -Feinstaub (Feinstaub von weniger als 10 Mikrometer, bis über 2,5 Mikrometer) die Blut-Hirn-Schranke nicht direkt überwinden können. PM2,5 (Feinstaub mit 50 % von 2,5 Mikrometer, einem größeren Anteil darunter und einem kleineren Anteil darüber) kann jedoch auch kleiner als 2,5 Mikrometer sein.88 Sofern die Studien nicht zwischen PM2,5 und PM1 unterscheiden, muss daher angenommen werden, dass PM2,5 auch Blut-Hirn-Schranke gängige Partikel beinhaltete.
Studien fanden einen Zusammenhang zwischen PM2,5 und Hyperaktivität/Aufmerksamkeitssymptomen (OR = 1,12)89, Hyperaktivität90, ADHS-Symptomen91 und zwischen PM2,5 im ersten Trimester und einer Tendenz zu Aufmerksamkeitsproblemen und Hyperaktivität.92
Andere Studien fanden keinen Zusammenhang zwischen PM2,5 und ADHS939495
Eine Metaanalyse berichtet eine Korrelation zwischen PM10 und ASS.96 Eine Studie unterschied die Risikoerhöhung für ASS nach PM1 (+ 86 %), PM2,5 (+ 76 %) und PM10 (+ 68 %).97
1.2.7.2. Stickstoffoxide (Stickoxide)
Mehrere Studien fanden eine Korrelation zwischen einer Stickstoffoxid-Belastung in der Schwangerschaft und ADHS.68
- NOx korrelierte mit Hyperaktivität, wobei ein stärkerer Zusammenhang zwischen ADHS und NO als zwischen ADHS und NO2 bestand. (NO: aOR = 1,26)95
- NO2-Exposition während der Schwangerschaft korrelierte stark mit ADHS-Symptomen, wie
- Impulsivität
- Aufmerksamkeitsprobleme
- Hyperaktivität90
- Oppositionelles Verhalten (kein originäres ADHS-Symptom)
Andere Studien fanden keine signifikanten oder eindeutigen Korrelationen zwischen NOx und ADHS.938994
Eine Studie fand eine Korrelation zu ASS bei Kindern, nicht aber zu ADHS.99
Die Emission von Stickoxiden sank in Deutschland von 1990 bis 2020 um knapp 2/3.100
1.2.7.3. Ozon
Ozon bewirkte bei Ratten:83
- in der Substantia nigra
- verringerte Anzahl von Dopamin-Neuronen
- im Hippocampus
- verringerte Expression der Serotonin-Rezeptoren 5-HT1A, 5-HT1B und 5-HT4
- erhöhte Expression des Serotonin-Rezeptors 5-HT2C
- im Hypothalamus
- verringerte Serotoninspiegel
Bei Menschen fand sich bislang keine Korrelation zu ADHS.9068
1.2.8. Polychlorierte Biphenyle / Polychlorierte Biphenylether (+ 23 %)
Polychlorierte Biphenyle hemmen die Dopamin-Synthese sowie die Speicherung von Dopamin in den Vesikeln und dessen Ausschüttung und bewirken dadurch ein zu niedriges Dopaminniveau. Polychlorierte Biphenyle riefen (bei Ratten bereits in subtoxischen Dosen) Hyperaktivität und Impulsivität hervor.101 Polychlorierten Biphenyle können direkt auf dopaminerge Prozesse einwirken, um das Dopaminsystem zu stören und Parkinson-ähnliche Symptome zu erzeugen.102 Weitere Studien fanden ebenfalls dopaminverringernde Wirkung von PFAS.103104 sowie Einflüsse auf den Acetylcholin-, Serotonin- und Glutamat-Neurotransmitter-Haushalt.105
PFOS können die Plazenta und die Blut-Hirn-Schranke überwinden.106
Eine Übersichtsstudie an k = 30 Metastudien analysierte den Zusammenhang zwischen pränataler Exposition gegenüber PFOA und PFOS und ADHS bei Kindern im Alter von 4-11 Jahren.107
Bei Mädchen, nicht aber bei Jungen, fand sich eine statistisch signifikante Erhöhung des ADHS-Risikos.
PFOS erhöhen auch das Risiko von Übergewicht. Dieses Risiko summiert sich mit dem einer fettreichen Ernährung (HFD). Eine Kombination von HFD und PFOS verschlimmerte das allgemeine Verhalten, wie z. B. die in der Mitte verbrachte Zeit und das Aufbäumen, während PFOS allein die zurückgelegte Strecke beeinflusste. PFOS kann mithin Hyperaktivität fördern, während eine Kombination von PFOS und HFD das Sozialverhalten wie Aufrichten und Rückzug veränderte. PFOS-Exposition beeinflusst die Kalzium-Signalübertragung, MAPK-Signalwege, den Ionentransmembrantransport und Entwicklungsprozesse. Die Kombination von HFD mit PFOS verstärkt die Wirkung von PFOS im Gehirn und wirkt sich auf Signalwege aus, die mit ER-Stress, Axonführung und -verlängerung sowie neuronaler Migration zusammenhängen. PFOS und HFD erhöhen die Auswirkungen auf Entzündungswege, die Regulierung der Zellmigration und -proliferation sowie auf MAPK-Signalwege.106
1.2.9. Cadmium während der Schwangerschaft (+ 22 % bei Mädchen)
Eine Cadmium-Exposition während der Schwangerschaft erhöhte das ADHS-Risiko für 6-jährige Mädchen, nicht aber für Jungen. Eine verdoppelte Cadmium-Exposition der Mutter in der Schwangerschaft erhöhte das ADHS-Risiko für Mädchen um 22,3 %.108
Möglicher Wirkpfad: Blut-Hirn-Schranke.109
1.2.10. Bleidisposition während der Schwangerschaft
Bleidisposition während der Schwangerschaft110111112 wirkt sich auf den mesocorticolimbischen Kreislauf aus und erhöht das ADHS-Risiko des Nachwuchses.113
Rattenmütter wurden während der Schwangerschaft akutem Stress und Blei ausgesetzt. Die Wirkung auf den Nachwuchs differierte zwischen Bleiexposition allein oder Bleiexposition plus Stressexposition. Männliche Rattenjunge zeigten nur bei Bleiexposition allein, weibliche Rattenjunge nur bei kombinierter Blei- und Stressexposition erhöhte Corticosteronspiegel sowie verringerte Dopaminspiegel im PFC. Bereits eine kurzfristige Bleiexposition der Muttertiere verursachte diesen Effekt.114 Bei weiblichen Rattenjungen trugen in der Schwangerschaft Bleibelastung und Stress der Mutter als kumulative Faktoren zu Lernschwierigkeiten bei. Diese wurden neurophysiologisch durch das Glucocorticoidsystem auf das mesocorticolimbische System vermittelt.115
Weitere Studien fanden ebenfalls Belege dafür, dass Bleiexposition ebenso wie Stress während der Schwangerschaft das mesocorticolimbische Dopamin-/Glutamatsystem von weiblichen Nachkommen (weniger bei männlichen) beeinträchtigen und ihre Wirkung gegenseitig erhöhen.116 Männliche Rattenjunge zeigten unter ähnlichen Bedingungen eine Tendenz zu serotonergen Störungen des mesocorticolimbischen Systems und verändertem Delay Discounting.117
Selbst ein Bleigehalt im Trinkwasser unterhalb der Grenzwerte soll problematisch sein.111
Grundsätzlich sind Bleiwasserrohre in Gebieten mit kalkhaltigem Wasser wenig gefährlich, da Kalk eine zuverlässig schützende Schicht in den Rohren bildet. Es darf dann jedoch keine Entkalkungsanlage für das Trinkwasser installiert werden. Gleichwohl empfiehlt es sich bei Modernisierungen grundsätzlich, bleihaltige Wasserrohre auszutauschen.
Möglicherweise ist bei ADHS der Stoffwechsel in Bezug auf Kobalt, Kupfer, Blei, Zink und Vanadium verändert. Es wurde eine verringerte Zyklusstabilität (Determinismus), Dauer (mittlere Diagonallänge) und Komplexität (Entropie) der Expositionsprofile festgestellt.118
Blei ist ein zweiwertiges Kation, das Ca2+ nachahmt und die PKC-Signalisierung aktiviert.119
Arnsten120 beschreibt Blei als ein Gift, das mit ADHS verwechselbare Symptome verursacht.
Wirkpfade:
Blei scheint etliche schädliche neurophysiologische Wirkungen zu haben, die unter anderem auch das dopaminerge System betreffen:
- Beeinträchtigung des mesocorticolimbischen dopaminergen Systems121
- Beeinträchtigung von Dopaminrezeptoren121
- Beeinträchtigungen der Aufmerksamkeitsregulierung im PFC122
- Apoptose123
- Excitotoxizität123
- Verminderter zellulärer Energiestoffwechsel123
- Beeinträchtigte Häm-Biosynthese und Anämie123
- Oxidativer Stress123
- Lipidperoxidation123
- Veränderte Aktivität des Second-Messenger-Systems123
- Veränderte Neurotransmitterfreisetzung123
- Veränderte Neurotransmitter-Rezeptordichte123
- Beeinträchtigte neuropsychologische Funktionsfähigkeit123
- Beeinträchtigte Entwicklung und Funktion von Oligodendrozyten123
- Anormale Myelinbildung123
- Anormale neurotrophische Faktorexpression123
- Anormale dendritische Verzweigungsmuster123
- Störung der Blut-Hirn-Schranke123
- Störung des Schilddrüsenhormontransports ins Gehirn123
- Veränderte Regulation der Gentranskription123
- Verringerung der grauen Masse im PFC, insbesondere im ACC124
Blei scheint weiter folgende Verhaltensweisen auslösen zu können:
- Impulsivität122
- soziopathisches Verhalten125126
- unverantwortliches Verhalten125126
- kriminelles Verhalten125126
- Geringerer IQ123
- Beeinträchtigte akademische Leistung123
Bleivergiftung korreliert in den USA stark mit der Kriminalitätsrate und ausserehelichen Schwangerschaften.125126
Kinder mit erhöhten Bleispiegeln im Blut sollen für weitere Toxine in der frühen Kindheit besonders anfällig sein.127 Insbesondere wurde vor Blei in Wandfarben gewarnt. In der Schwangerschaft kann Blei von der Mutter durch die Plazenta auf das Kind übertragen werden.
1.2.11. Thallium während der Schwangerschaft
Eine hohe Thalliumexposition im zweiten Schwangerschaftstrimester erhöhte das ADHS-Risiko für 3-jährige Jungen, nicht aber für Mädchen.128
1.2.13. Hoher Salzkonsum während der Schwangerschaft
Eine hohe Salzaufnahme durch die Nahrung in der Schwangerschaft könnte die Stressempfindlichkeit des Ungeborenen erhöhen.129
1.2.13. Pestizide in der Schwangerschaft
1.2.13.1. Organochlorverbindungen-Kontakt in der Schwangerschaft
Organochlorverbindungen (Dichlorodiphenyltrichloroethane (DDT), Dieldrin, Heptachlor, Endosulfan) zeigten bei pränataler Exposition einen Einfluss auf die neuronale Entwicklung, die (bei Nagetieren), z.B.:130
- DAT erhöht
- Dopaminwiederaufnahme erhöht
- Verlust dopaminerger Zellen
- Veränderungen an der Präsynapse in wichtigen dopaminergen Proteinen als Reaktion auf OC-Pestizide in Striatum oder Substantia nigra
- Noradrenalin erhöht
- Serotonin erhöht
- GABA-Rezeptoren verringert
- NMDA-Rezeptoren verringert
- mGluR5-Rezeptoren verändert
- veränderte GABAerge, glutamaterge und dopaminerge Reaktion auf Endosulfan im PFC
- veränderte dopaminerge Reaktionen auf Heptachlor-Exposition identifiziert
mit Beeinträchtigungen u.a. von:
- Aufmerksamkeitsprozesse
- kognitiver Leistungsfähigkeit
- Gedächtnis
- soziale Entwicklung
- geistige und psychomotorische Entwicklung
- Feinmotorik
- Reflexe
- visuelle Verarbeitung
Organochlorverbindungen wurden gleichwohl vornehmlich mit ASS in Verbindung gebracht.
1.2.13.2. Organophosphate-Kontakt in der Schwangerschaft
Die Organophosphate Chlorpyrifos und Diazinon zeigten erhebliche Auswirkungen auf die Gehirnentwicklung von Neugeborenen, unter anderem auf das dopaminerge System.131 Pränatale Exposition gegenüber dem verbreiteten Pestizid Chlorpyrifos beeinträchtigte IQ und Arbeitsgedächtnis bei Kindern im Alter von 7132133 und die Exekutivfunktionen.134
Organophosphate hemmen die Acetylcholinesterase (= das Enzym, das Acetylcholin abbaut).130 Über das Organophosphat Diisopropylfluorophosphat (DFP) wurde neben der bekannten Downregulation von cholinergen Rezeptoren eine Erhöhung von Dopamin- und GABA-Rezeptoren berichtet. Eine einmalige Gabe von 1 mg/kg DFP bewirkte erhöhte Dopaminspiegel, eine einmalige toxische Dosis von 2 mg/ kg DFP einen erhöhten Dopaminabbau. Nach 6 Stunden waren die Werte wieder normalisiert. Eine chronische Gabe von 1 mg/kg DFP bewirkte nach 1 und 2 Wochen verringerte Dopaminspiegel, die sich bei fortgesetzter Gabe wieder normalisierten. Eine einmalige Gabe von DFP erhöhte den Dopaminumsatz im Striatum von Ratten, eine chronische Gabe verringerte diesen. Die Autoren vermuteten, dass die Änderungen von Dopamin- und GABA Folgen der Downregulation der cholinergen Rezeptoren sein könnten.135
Chlorpyrifos stört das Serotoninsystem. Kontakt in der Schwangerschaft kann bei Kindern Tremor auslösen und die kognitive und neuroverhaltensbezogene Entwicklung beeinträchtigen.15
Eine Messung anhand pränataler Urin-Dialkylphosphat-Metaboliten (Diethylphosphat und Dimethylphosphat) sowie einer Analyse der mütterlichen PON1-Genvarianten Q192R und L55M fand keinen Zusammenhang zwischen Organophosphat-Kontakt der Mutter während der Schwangerschaft und einem späteren ADHS des Kindes.136
Einer norwegische Kohortenstudie fand ein erhöhtes ADHS-Risiko des Nachwuchses bei Nachweis im Blut der Mutter während der Schwangerschaft von:137
- Di-n-butylphosphat (DnBP)
- Bis(1,3-dichlor-2-propyl)phosphat (BDCIPP)
- Bis(2-butoxyethyl)phosphat (BBOEP)
- nur bei Jungen. Bei Mädchen verringertes Risiko mit steigender Belastung.
Höhere Vitamin-D-Spiegel der Mutter scheinen die negative Wirkung des Organophosphats Chlorpyrifos auf das ADHS-Risiko des Nachwuchses zu verringern.138139
Eine andere norwegische Registerstudie fand keine Hinweise auf ein erhöhtes ADHS-Risiko des Nachwuches bei Kontakt der Mutter mit Organophosphaten in der 17. Schwangerschaftswoche.140
1.2.13.3. Pyrethroid-Kontakt vor oder in der Schwangerschaft
Pyrethroide sind als Insektenvernichtungsmittel und Pflanzenschutzmittel weitverbreitet.
Jede Verdoppelung des Pyrethroid-Metaboliten 3-phenoxybenzoic acid (3-PBA) im Urin der Mutter in der 28. Schwangerschaftswoche erhöhte das Risiko von ADHS des Nachwuchses um 3 % sowie das Risiko, dass ein eintretendes ADHS unter den 10 % der schwersten ADHS-Fälle lag, um 13 %.141
Das Pyrethroid Deltamethrin beeinträchtigt bei Mäusen bei früher Exposition offenbar das dopaminerge System:142
- DAT verringert
- D1-Rezeptor verringert
- Apoptose
Weiter ergaben sich (bei pränataler, nicht aber bei postnataler Exposition)143 dauerhafte Verhaltensveränderungen in Bezug auf:142
- Bewegungsaktivität
- akustischen Startle-Reflex
- Lernen
- Gedächtnis
3-PBA und Chlorpyrifos verstärken gegenseitig ihre Wirkung in Bezug auf ADHS.141
Jede Messung von Trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (trans-DCCA), einem Metaboliten von Permethrin, Cypermethrin und Cyfluthri (Trans-Isomere von Pyrethroiden), im Urin erhöhte das Risiko für ADHS des Nachwuchses um 76 %.141
1.2.13.4. Glyphosat-Kontakt in der Schwangerschaft
Glyphosat (z.B. Roundup) ist ein Breitbandherbizid aus der Gruppe der Phosphonsäuren.
Bei Ratten bewirkte eine orale Glyphosat-Exposition der Mutter (0,5 und 50 mg/kg Körpergewicht/Tag) während der Schwangerschaft und der Stillzeit (insbesondere) beim (weiblichen) Nachwuchs:144
- Depressions-Symptome
- Angst-Symptome
- soziale Defizite
- verringerte Expression und Hypermethylierung des Tryptophanhydroxylase 2-Gens im Hippocampus
- Tryptophanhydroxylase ist an der Serotonin-Synthese im Gehirn beteiligt
- veränderte Darmmikrobiota der weiblichen Nachkommen
- verminderten Häufigkeit von Akkermansia
- erhöhte Abundanz von Alistipes und Blautia
(Bakterien, die am Tryptophan-Stoffwechsel beteiligt sind und mit depressions- und angstähnlichen Störungen in Verbindung gebracht werden)
Dies deutet auf eine Beteiligung von Glyphosat an Depression- und Angststörungen hin. Eine Verbindung zu ADHS ergibt sich daraus noch nicht.
Glyphosat wird auch als eine mögliche Ursache für ASS verdächtigt.145
1.2.14. Bisphenole in der Schwangerschaft
Bisphenol A (BPA) ist eine der weltweit am häufigsten hergestellten synthetischen Verbindungen. BPA kommt in Epoxidharzen und Polycarbonat-Kunststoffen vor, die häufig für die Aufbewahrung von Lebensmitteln und Babyflaschen verwendet werden.146
BPA kann die Plazenta überwinden147148149 und finden sich in der menschlichen Muttermilch.150 BPA beeinträchtigt die Darm-Hirn-Achse und die Blut-Hirn-Schranke.151146152153154
BPA kann:146
- an Östrogenrezeptoren binden
- verschiedene strukturelle und molekulare Veränderungen des Gehirns verursachen
- oxidativen Stress fördern
- das Expressionsniveau mehrerer wichtiger Gene und Proteine verändern
- Neurotransmitter beeinträchtigen
- Exzitotoxizität verursachen
- Neuroinflammation fördern
- die Funktion der Blut-Hirn-Schranke beschädigen
- neuronale Schäden auslösen
- Apoptose fördern
- die intrazelluläre Ca2+-Homöostase stören
- reaktive Sauerstoffspezies (ROS) erhöhen
- intrazelluläre Laktatdehydrogenase-Freisetzung beeinflussen
- die Axonlänge verringern
- mikrogliale DNA-Schäden verursachen
- Astrogliose auslösen
- signifikant reduzierte Myelinisierung bewirken
Eine BPA-Exposition erhöht das Risiko neurologischer Erkrankungen, einschließlich146
- neurovaskulärer Stöungen (z. B. Schlaganfall)
- neurodegenerativer Erkrankungen (z.B. Alzheimer und Parkinson)
- Neuroentwicklungs-Erkrankungen wie ADHS, ASS
- Depressionen
- emotionalerr Probleme
- Angstzuständen
- kognitiver Störungen
Bisphenol-A (BPA) ist ein Glucocorticoidrezeptor-Agonist und wird mit Veränderungen der HPA-Achsen-Reaktion in Verbindung gebracht. Bei weiblichen Ratten korrelierte vorgeburtliches BPA mit erhöhten basalen Corticosteronwerten sowie mit verringerter Glucocorticoid-Rezeptor-Expression im Hypothalamus. Auf Stress zeigten diese weiblichen Ratten ein ängstliches Bewältigungsverhalten und eine gedämpfte Corticosteronreaktion mit fehlender Downregulation der Glucocorticoid-Rezeptor-Expression im Hypothalamus. BPA-exponierte männliche Ratten zeigten dagegen keine veränderte basale HPA-Achsen-Funktion, konnten aber auf akuten Stress die Expression des CRH-1-Rezeptors in der Hypophyse nicht hochregulieren.15 Die den Rattenmüttern während der Schwangerschaft und der Säugezeit gegebene Dosis war mit 40 Mikrogramm / kg / Tag sehr niedrig.155
5 Milligramm / Kubikmeter in der Atemluft bewirken Augenreizungen.156 Ein Review bestätigte Indizien, das Bisphenol-A in der Schwangerschaft das ADHS-Risiko der Kinder, insbesondere von Jungen, erhöhen kann.157
BPA und BPS verursachten in Maus-Plazentas stark erhöhtes Dopamin (3- bis 5-fach) und stark verringertes Serotonin (um 80 %). GABA blieb unverändert.158 BPA ist ein endokriner Disruptor und imitiert die östrogene Aktivität. Damit wirkt BPA sich auf verschiedene dopaminerge Prozesse aus, um die mesolimbische Dopaminaktivität zu erhöhen, was zu Hyperaktivität, Aufmerksamkeitsdefiziten und einer erhöhten Empfindlichkeit gegenüber Drogenmissbrauch führt.102
1.2.15. Phthalate in der Schwangerschaft
Phthalsäureester erhöhen nach den meisten Untersuchungen das Risiko von ADHS für das Ungeborene,159160 wobei die Zusammenhänge bislang unklar sind.161157 Es wird eine Beeinflussung des Thyroid-Haushalts erörtert.162 Höhere Phtalat-Metaboliten im Urin Schwangerer korrelierten mit erhöhter Ablenkbarkeit bei den Kindern im Vorschulalter.163
Eine pränatale Di-methoxyethyl Phthalat (DMEP)-Exposition verursachte bei Mäusen eine abnorme Gehirnmorphologie und -funktion. DMEP reduzierte signifikant die Anzahl der Neuronen im parietalen Kortex durch Beeinträchtigung der Neurogenese und Gliogenese während der Kortexentwicklung und beeinträchtigte die dendritische Spine-Architektur und die synaptische Aktivität im parietalen Kortex. Zudem induzierte pränatales DMEP bei Mäusen Hyperaktivität und reduzierte Angstverhalten.164
1.2.16. Perfluoralkylverbindungen (PFAS) in der Schwangerschaft
Eine Langzeitstudie fand keine Korrelation zwischen einer Perfluoralkyl-Belastung in der Schwangerschaft und ADHS. Es fanden sich schwache – positive und negative – Korrelationen zu Arbeitsgedächtnisfunktionen in der Kindheit.165 Eine Metastudie fand ebenfalls keine signifikante Korrelation zwischen mütterlicher PFAS-Exposition und der Prävalenzrate von frühkindlichem ADHS. Gleichwohl waren das Odds-Ratio teilweise erhöht:166
- Perfluoroctansäure (PFOA): 1,00
- Perfluoroctansulfonat (PFOS): 1,01
- Perfluorhexansulfonat (PFHxS): 1,08
- Perfluorononansäure (PFNA): 1,13
- Perfluordecansäure (PFDA): 1,23
Die PFOS-Konzentration im Blut der Kinder sowie die PFNA-Konzentration im Blut der Mütter korrelierte mit der Prävalenz von frühkindlichem ADHS.
Eine andere Studie fand eine Korrelation von Perfluoroctansäure (PFOA) und AD(H)DS, nicht aber von Perfluoroctansulfonat (PFOS) mit ADHS oder ASS.167 Eine weitere Studie fand ein erhöhtes ADHS-Risiko von Schulkindern bei einer niedrigen bis mittleren Belastung mit PFAS im Alter von 2 Jahren.168
1.2.17. Dioxin-Exposition während der Schwangerschaft
Kinder, die während der Schwangerschaft Dioxin ausgesetzt waren, haben ein erhöhtes ADHS-Risiko.169
1.2.18. Pränatale Schwefeldioxid-Exposition
Eine pränatale Schwefeldioxid-Exposition (SO2) korrelierte mit einer DNA-Methylierung und erhöhten AD(H)S-Symptomen.170171
Zwei andere Studien fanden laut einem Review68 keinen signifikanten Zusammenhang.9590
1.2.19. Polybromierte Diphenylether
Polybromierte Diphenylether (PBDE) sind bromhaltige organische Chemikalien. Sie dienten als Flammschutzmittel in vielen Kunststoffen und Textilien.
Ihre Konzentration in der Muttermilch stieg zwischen 1972 und 1998 exponentiell an.
Die deutsche Industrie verzichtete 1986 freiwillig auf die Verwendung. Schweden verbot 1999 die Herstellung und die Verwendung.
EU-weit dürfen PentaBDE und OctaBDE seit 2003 nur noch bis max.0,1 Gewichtsprozent in den Verkehr gebracht oder verwendet werden.
Eine pränatalen PBDE-Exposition erhöht offenbar bei Mädchen ADHS-Symptome.172
1.2.20. Niedriger Urin-Fluoridgehalt der Mutter
Eine Studie fand einen inversen Zusammenhang zwischen Fluoridgehalt des Urins der Mutter mit kognitiven Problemen des Nachwuches im Alter von 11 Jahren. Je höher der Fluoridgehalt war, desto geringer waren die kognitiven Probleme.173 Dies deckte sich nicht mit den Ergebnissen anderer Studien, die ein erhöhtes ADHS-Risiko bei erhöhten Urin-Fluoridgehalt der Kinder selbst feststellten.174175
1.2.21. Mangan
Es gibt schwache Hinweise auf eine Relevanz bei ADHS, wobei bei ADHS-Betroffenen erhöhte Manganspiegel nur im Haar, nicht aber in Blutspiegel gefunden wurden.176
Eine Verdoppelung des Mangangehalts in Zähnen aus pränataler wie postnataler Zeit erhöhte das Risiko von Aufmerksamkeitsproblemen und ADHS-Symptomen in der Schulzeit um 5 %. Mangan aus der Zeit des Kindesalters zeigte keinen Einfluss.177
Ein Tiermodell mit entwicklungsbedingter Manganexposition zeigte, dass Mangan dauerhafte Aufmerksamkeits- und sensomotorische Defizite verursachen kann, die einem ADHS-I ähneln. Orales Methylphenidat konnte die durch frühe Mangan-Exposition entstehenden Defizite vollständig ausgleichen.178
1.3. Krankheiten der Mutter / der Eltern (bis + 310 %)
Kinder mit ADHS hatten häufiger Mütter, die während der Schwangerschaft gesundheitliche Beeinträchtigungen hatten:44
- Krankheiten der Mütter während der Schwangerschaft:
Bei 34,4 % der Kinder mit ADHS hatte die Mutter in der Schwangerschaft eine Krankheit, bei nicht betroffenen Kindern 14,4 %.- Kinder mit ADHS: 34,7 %
Krankheiten der Mutter in der Schwangerschaft lagen in folgendem Trimester:- nur 1./2. Trimester: 56,4 %
- nur 3. Trimester: 12,7 %
- gesamte Schwangerschaft: 30,9 %
- Nichtbetroffene Kinder: 14,4 %
Krankheiten der Mutter in der Schwangerschaft lagen in folgendem Trimester:- nur 1./2. Trimester: 0 %
- nur 3. Trimester: 33,3 %
- gesamte Schwangerschaft: 66,7 %
- Kinder mit ADHS: 34,7 %
- Andere Schwangerschaftsprobleme:
- Kinder mit ADHS: 14,5 %
- Nichtbetroffene Kinder: 3,8 %
1.3.1. Erhöhte oder verringerte Thyroxinwerte
1.3.1.1. Erhöhte oder verringerte Thyroxinwerte der Mutter (bis + 310 %)
Abnormale Schilddrüsenhormonspiegel während der Schwangerschaft können tiefgreifende Auswirkungen auf die Entwicklung von Gehirns und Kognition des Kindes haben179180 und beeinträchtigen
- Neuroentwicklungsprozesse181
- Zelldifferenzierung
- Neuritenwachstum
- Synaptogenese
- Myelinisierung
- Neurotransmittersysteme182
- monoaminerges System
- cholinerges System
- was zu Aufmerksamkeitsdefiziten und Hyperaktivität führen kann
Auch vorübergehende subklinische Schilddrüsenanomalien in der Schwangerschaft können schwerwiegende Folgen haben.183 Eine Behebung einer schweren mütterlichen Hypothyreose vor dem 3. Schwangerschaftssemester scheint kognitive Beeinträchtigungen184 und Frühgeburten zu vermeiden.185
Studien an Mäusen mit einem mutierten menschlichen Thyroid Rezeptor TRb 1-Gen (TRbeta-transgene Mäuse)186 fanden bei diesen
- bis auf einen kurzen Zeitraum während der postnatalen Entwicklung normale Schilddrüsenhormonwerte von Trijodthyronin (T3) und Thyroxin (T4) (euthyreotisch)
- bis ins Erwachsenenalter
- Veränderungen im dopaminergen System (erhöhter Dopaminumsatz)
- ADHS-Symptome
- Hyperaktivität
- Unaufmerksamkeit
- ADHS-Symptome werden durch MPH reduziert
Eine Studie fand ein um 7 % erhöhtes ADHS Risiko der Kinder bei unbehandelter milder Thyroxinmangel der Mutter während der frühen Schwangerschaft.187 In einer anderen Studie zeigten verringerte oder unbehandelte normale Thyroxinwerte der Mutter keinen Einfluss auf ein ADHS der Kinder. Dagegen scheint eine Thyroxinbehandlung der Mutter, insbesondere mit überhöhten Thyroxinwerte aufgrund einer Überdosierung, das ADHS-Risiko der Kinder zu erhöhen.188 Eine andere Untersuchung fand ebenfalls Hinweise auf Thyroxin als eine mögliche Ursache von ADHS,189 eine weitere Studie keinen Einfluss der Thyroxinwerte der Mutter in der Schwangerschaft.190
Eine norwegische Kohortenstudie fand ein 2,27-faches Risiko für ADHS bei Schilddrüsenhormon-T3-Werten der Mutter in der 17. Schwangerschaftswoche innerhalb des obersten 1/5 gegenüber dem untersten 1/5. Bei freiem T4 waren erhöhte wie verringerte Werte risikoerhöhend: das oberste 1/5 ebenso wie das unterste 1/5 zeigten das 1,6-fache ADHS-Risiko des Nachwuchses.191
Bei männlichen Mäusen fand eine Studie einen deutlich verringerten Dopamin- und Serotoninumsatz im Striatum, Nucleus accumbens, Hypothalamus und Hippocampus als Folge eines vorgeburtlichen Thyroxinmangels.192 Dopaminmangel im Striatum / Nucleus accumbens ist bei ADHS für hyperaktive Symptome verantwortlich.
1.3.1.2. Verringerte und erhöhte TSH-Werte der Neugeborenen (+ 14 % bei Jungen bis + 310 % bei Mädchen)
Kinder mit einer angeborenen Hypothyreose (congenitale Hypothyreose, connatale Hypothyreose) zeigten eine Inzidenz von ADHS von 3,97 % (versus 1,87%, + 112 %) und von ASS von 0,71 % (versus 0,13 % = + 346 %).193
Eine Kohortenstudie aus Norwegen fand bei Neugeborenen, die zu geringe oder zu hohe TSH-Werte aufwiesen, ein erhöhtes ADHS-Risiko im späteren Lebensalter, jedoch nur bei Mädchen. TSH-Werte in der Gruppe der niedrigsten 20 % erhöhten das ADHS-Risiko der Mädchen auf das 3,1-fache, von Jungs lediglich um 14 %.194
Eine primäre Hypothyreose verringerte bei Nagetieren den Gukosetransporter GLUT1 im Gehirn, verändert GLUT3 nicht und erhöht kompensatorisch die Hexokinase-Enzymaktivität. Diese Veränderungen waren jedoch nur in der unmittelbaren Neugeborenenperiode ausgeprägt und verschwanden nach dem Abstillen.195
1.3.2. Schweres Übergewicht der Mutter vor oder in Schwangerschaft (+ 14 % bis 280 %)
Massives Übergewicht der Mutter während der Schwangerschaft erhöhte das Risiko für ein späteres ADHS des Kindes
- um das 2,8-fache.196
- um 62 %197
- um 57 % für ADHS und 42 % für ASS198
Bereits ein überhöhter BMI der Mutter vor der Schwangerschaft erhöhte das ADHS-Risiko des späteren Nachwuches.199 Ein BMI von 25 bis 30 erhöhte das ADHS-Risiko des Kindes um 14 %, ein BMI von 30 bis 35 um 96 % und ein BMI von mehr als 35 um 82 %.200
Andere Schwankungen des Gewichts der Mutter vor und am Ende der Schwangerschaft scheinen das ADHS-Risiko nicht zu beeinflussen.37 Bei Ratten gibt es jedoch Hinweise auf einen Einfluss auf den Dopaminhaushalt der Nachkommen.201
Eine norwegische Registerstudie fand nur geringe Hinweise auf einen Einfluss des Vor-Schwangerschafts-BMI der Mutter auf das ADHS-Risiko des Kindes.202
1.3.3. Chemikalien- / Medikamentenunverträglichkeit (+ 110 % bis 130 %; ASS + 201 % bis 470 %)
Kinder von Müttern mit einer Chemikalien- / Medikamentenunverträglichkeit (positives Ergebnis des Quick Environmental Exposure and Sensitivity Inventory (QEESI), einem validierten Screening-Instrument zur Chemikalienunverträglichkeit) hatten das 2,3-fache Risiko von ADHS und das 3,01-fache Risiko von ASS.203204
1.3.4. Präeklampsie (Gestose) in der Schwangerschaft (+ 30 % bis + 188 %)
Probleme in der Schwangerschaft, die die Sauerstoffversorgung des Fötus beeinträchtigen, erhöhen das ADHS-Risiko beim Kind um 30 bis 188 %.205 Eine Kohortenstudie fand eine ADHS-Risikoerhöhung durch Schwangerschaftsgestose um 43 %.206 Mehrere Reviews bestätigen ein erhöhtes ADHS-Risiko durch Präeklampsie in der Schwangerschaft.207208
Präeklampsie steht in Zusammenhang mit Veränderungen des Adenosinsystems, einschließlich der Adenosin-Transporter und der Adenosinrezeptoren. SHR werden aufgrund des Bluthochdrucks der Mütter in einer Präeklampsie-ähnlichen Situation geboren. Koffein (ein Adenosin-Antagonist) bei 7 Tage alten SHR verhinderte die negativen Folgen der Präeklampsie (Hyperaktivität, verschlechterte soziale Interaktion, verschlechterte kontextuelle Angstkonditionierung), während es diese Symptome bei Wistar-Ratten verstärkte.209
Hypoxie (Sauerstoffmangel) erhöht Adenosin. Adenosin-Antagonisten können die negativen Folgen von Hypoxie verhindern oder beheben. Mehr hierzu unter ⇒ Adenosin im Kapitel Neurologische Aspekte.
Hohe Spiegel des (schwachen) Adenosinantagonisten Theobromin korrelierten negativ mit Präeklampsie.210
1.3.5. Itrahepatische Cholestase (ICP) in der Schwangerschaft (+ 7 % bis + 162 %)
Die intrahepatische Cholestase in der Schwangerschaft (ICP) ist die häufigste geburtsthematische Lebererkrankung. Sie geht mit einem erhöhten Risiko für eine iatrogene Frühgeburt und nachteilige Folgen für das Kind einher.211
Eine ICD erhöhte das ADHS / ASS-Risiko:
- vor der 28. Schwangerschaftswoche
- 2,62-faches ADHS-Risiko
- 1,69-faches ASS-Risiko
-
- bis 36. Schwangerschaftswoche
- 1,36-faches ADHS-Risiko
- 1,37-faches ASS-Risiko
- nach der 36. Schwangerschaftswoche
- 1,07-faches ADHS-Risiko
- 1,13-faches ASS-Risiko
1.3.6. PTBS (PTSD) in der Schwangerschaft (+ 132 %)
Eine posttraumatische Belastungsstörung der Mutter in der Schwangerschaft geht laut einer schwedischen Kohortenstudie mit einem 2,32-fachen ADHS-Risiko des Nachwuchses einher.212
1.3.7. Psychischer Stress der Mutter in der Schwangerschaft (+ 72 % bis + 100 %; mit 5HTTLPR + 800 %)
Stress der Mutter während der Schwangerschaft erhöhte das Risiko von ADHS bei den Kindern
Anhaltender und starker (angstbesetzter, bedrohlich wahrgenommener = cortisolerger) Stress erhöht das Risiko für Schreikinder216 (siehe auch 2.2.2.3.2), Angststörungen und ADHS erheblich.217218219220221
Dabei ist anhaltender Stress (hier: finanzielle Probleme) schädlicher als kurzzeitiger Stress (hier: Verlust einer nahestehenden Person).222
Hoher angstbesetzter / bedrohlich wahrgenommener Stress erhöht zugleich das Risiko für Borderline bei den Kindern signifikant.
Kinder mit ADHS hatten häufiger Mütter, die während der Schwangerschaft Stress oder emotionale Probleme hatten:44
- Kinder mit ADHS: 53,8 %
Wenn Stress/emotionale Probleme auftraten, lagen diese in folgendem Trimester:- nur 1./2. Trimester: 36,0 %
- nur 3. Trimester: 6,7 %
- gesamte Schwangerschaft: 57,3 %
- Nichtbetroffene Kinder: 27,6 %
Wenn Stress/emotionale Probleme auftraten, lagen diese in folgendem Trimester:- nur 1./2. Trimester: 28,6 %
- nur 3. Trimester: 24,9 %
- gesamte Schwangerschaft: 28,6 %
Haarcortisolwerte von Müttern und ihren Kindern zeigten eine Übertragung psychischer Stresserfahrungen von Müttern an die Kinder.223
Eine Studie fand bei Kindern von Frauen, die einem einmonatigen wiederholten Raketenbeschuss der Zivilbevölkerung im Libanonkrieg 2006 ausgesetzt waren, keine erhöhten psychiatrischen Störungen im Alter von 9 Jahren.224 Möglicherweise ist einmonatiger wiederholter Stress kein ausreichend intensiver Stressor.
Das bei angstbesetztem / bedrohlichem Stress ausgeschüttete Cortisol der Mutter wird vom Ungeborenen resorbiert und führt zu bleibenden Schäden der HPA-Achse, die mittels Cortisol Stressreaktionen reguliert.225226
Starke Angst der Mutter in der Schwangerschaft während der 12. bis 22. Woche nach der letzten Regel erhöht das Risiko für ADHS signifikant, während starke Angst in der 32. bis 40. Woche das Risiko nicht erhöht.227 Erhöhte Cortisolwerte der Mutter im 3. Schwangerschaftstrimester erhöhten das Risiko des Nachwuchses für ASS-Symptome nur bei Jungen im Alter von 3 Jahren, die aber im Alter von 5 Jahren nicht mehr signifikant waren. ADHS-Symptome waren weder im Alter von 3 noch im Alter von 5 Jahren erhöht.228
Es scheint also stark auf den Zeitpunkt der Stresserfahrung anzukommen.
Starke Angst der Mutter in der Schwangerschaft erhöhte das ADHS-Risiko des Ungeborenen in Abhängigkeit von dessen COMT-Gen-Variante (Gen-Umwelt-Interaktion).229
Bei Müttern mit den ADGRL3 (Latrophilin 3, LPHN3) - Gen-Varianten (SNPs)
- rs6551665
- rs1947274
- rs6858066 oder
- rs2345039
bewirkte bereits geringer Stress während der Schwangerschaft ein erheblich erhöhtes ADHS-Risiko für das Kind.230
Eine Kombination des 5HTTLPR L/L-Genotyp und Stress während der Schwangerschaft bewirkte ein achtmal höheres Risiko für ADHS/C oder ADHS-HI.231
Früher pränataler Stress erhöht den Gehalt an Immunantwortgenen, einschließlich der proinflammatorischen Zytokine IL-6 und IL-1β, insbesondere in männlichen Plazentas. Männliche Kinder zeigen stressbedingte Bewegungshyperaktivität, ein Markenzeichen der dopaminergen Dysregulation, die durch eine Behandlung der Mutter mit nichtsterioidalen Entzündungshemmern verbessert wurde. Zudem war die Expression von Dopamin D1- und D2-Rezeptoren durch frühen pränatalen Stress bei männlichen Nachkommen verändert.232 Die betätigt die Auswirkung von frühem Stress auf das dopaminerge System.
Eine hohe Cortisol-Exposition des Fötus oder Neugeborenen kann eine Methylierung des GAD1 / GAD67-Gens bewirken, das das Schlüsselenzym für die Glutamat-zu-GABA-Synthese, Glutamat-Decarboxylase 1, codiert, und zu erhöhten Glutamatspiegeln führen. Dieser epigenetische Mechanismus kann das ADHS-Risiko der Kinder erhöhen.233 Die Exposition gegenüber Glucocorticoiden während der Entwicklung des Hippocampus in der Schwangerschaft beeinflusst den Startpunkt der Stressreaktion durch epigenetische Veränderungen mittels mRNA und Methylierung.234 Eine andere Studie berichtet, dass die durch psychischen Stress der Mutter vermittelte Risikoerhöhung für das Ungeborene für Entwicklungsstörungen wie ADHS möglicherweise mittels mRNA-Expression von Glucocorticoid-Pathway-Genen in der Plazenta vermittelt werden könnte.235
Eine weitere Studie beschreibt ebenso epigenetische Veränderungen im Ungeborenen aufgrund von psychischem Stress der Mutter während der Schwangerschaft.236
Eine Studie fand keine signifikante Risikoerhöhung für psychische Störungen bis zum Alter von 10 Jahren durch eine erhöhte Glucocorticoidbelastung der Ungeborenen.237
Eine Belastung der Mutter durch eine Naturkatastrophe während der Schwangerschaft erhöhte das ADHS-Risiko.238
Bei Primaten wird das Stresshormon Cortisol durch das Enzym Hydroxysteroid 11-β-Dehydrogenase 2 (HSD11B2) in seine inaktive Form umgewandelt. Diese Umwandlung in der Plazenta schützt auch den Fötus.239240 Chronischer Stress der Mutter (ebenso wie Fehlernährung oder Hypoxie) verringert jedoch die HSD11B2-Expression in der Plazenta.240 Föten chronisch gestresster Mutter sind daher hohen Cortisolkonzentrationen ausgesetzt, was Entwicklungsverzögerungen und neurologische Entwicklungsstörungen wie ADHS auslöst.241242240 Bei Nagetieren wird stattdessen die Expression von Hsd11b1 verringert, das ein Enzym zur Regulierung der Aktivität stressbedingter Hormone im Neokortex kodiert.243
Mütterlicher Stress während der Schwangerschaft oder Geburtskomplikationen wie mütterliche Infektionen während der Schwangerschaft oder Sauerstoffmangel bei der Geburt sind auch Risiko erhöhend für andere Störungsbilder, wie z.B. Schizophrenie.244
1.3.8. Polyzystisches Ovarialsyndrom (PCOS) in der Schwangerschaft (+ 31 bis + 95 % bei Jungen)
Kinder von Frauen mit Polyzystischem Ovarialsyndrom (PCOS) scheinen ein erhöhtes Risiko für ADHS zu haben.245
Möglicherweise könnte sich ein Zusammenhang daraus ergeben, dass eine Behandlungsmethode der Einsatz von Dopaminagonisten ist.246247 Eine weiterer Zusammenhang könnte darin bestehen, dass PCOS mit Hyperandrogenämie einhergeht. Erhöhte pränatale Testosteronwerte sind ein Risikofaktor für ADHS. Mehr hierzu unter Geschlechtsunterschiede bei ADHS.
Eine Studie fand bei 3-jährigen Jungen von Müttern mit einem PCOS ein um 95 % erhöhtes ADHS-Risiko, während dies bei 3-jährigen Mädchen nicht erhöht war.248 Auch dies deutet auf einen Zusammenhang mit Geschlechtshormonen hin, obwohl erhöhte Testosteronwerte in der Schwangerschaft auch bei weiblichem Nachwuchs erhöhte ADHS-Symptome verursacht. Mehr hierzu unter Geschlechtsunterschiede bei ADHS. Es ist auch bekannt, dass sich ADHS bei Mädchen später zeigt als bei Jungen.
Eine chinesische Studie fand (nur) bei Jungen von 3 bis 6 Jahren ein um 31 % erhöhtes ADHS-Risiko.249 Da ADHS häufig erst im Alter ab 6 Jahren diagnostiziert werden kann, vermuten wir im Schulalter eine höhere Quote.
Frauen mit PCOS hatten selbst ein erhöhte ADHS-Risiko, wobei kein Zusammenhang zwischen Testosteron und ADHS-Symptomen gefunden wurde.250
1.3.9. Ungesunde Ernährung der Mutter in der Schwangerschaft (+ 60 %)
Eine ungesunde oder eine “westliche” Nahrungsaufnahme der Mutter während der Schwangerschaft erhöhte die Wahrscheinlichkeit der Kinder für ADHS um mehr als 60 %.251
Da Stress die Bevorzugung von “Convienient Food” erhöht, könnte die Korrelation unserer Ansicht nach möglicherweise auch ein indirektes Abbild einer erhöhten Stressbelastung der Mutter währende der Schwangerschaft darstellen, da Stress die Nahrungspräferenzen in Richtung schnell verwertbare Nahrungsmittel und Convienient Food verändert.
1.3.10. Fieber der Mutter in der Schwangerschaft (+ 31 % bis + 164 %)
Eine Kohortenstudie an 114.000 Kindern zeigte, dass Fieber im ersten Trimester der Schwangerschaft das ADHS-Risiko um 31 % erhöht, mehrfaches Fieber um 164 %. Fieber erhöhte jedoch nur die Unaufmerksamkeit, nicht die Hyperaktivität/Impulsivität – dies galt auch für das zweite Trimester. Die Ergebnisse waren unabhängig davon, ob die Mutter Paracetamol (Acetaminophen) einnahm oder nicht.252
1.3.11. Verringertes C-reaktives Protein (CRP) (+ 92 %)
Kinder von Müttern, deren CRP-Werte im untersten Drittel der Probandengruppe lagen, hatten im Vergleich zu Kindern von Müttern aus dem mittleren Drittel an CRP ein knapp verdoppeltes Risiko für ASS und ADHS.253
1.3.12. Systemischer Lupus erythematosus (SLE) (+ 60 %)
Bei Kindern von Müttern, die an Systemischem Lupus erythematosus (SLE) litten, fand sich ein um 60 % erhöhtes ADHS-Risiko.254
ADHS geht seinerseits mit einem 2,17-fachen Lupus-Risiko einher.255
1.3.13. Asthma der Eltern in- und außerhalb der Schwangerschaft (+ 13 % bis + 41 %)
Asthma der Mutter in der Schwangerschaft erhöht das ADHS- und ASS-Risiko des Nachwuchses.256 Eine Kohortenstudie an 961.202 Kindern zeigte ein um 41 % erhöhtes ADHS-Risiko bei Asthma der Mutter und ein um 13 % erhöhtes Risiko bei Asthma des Vaters. Ein Asthmaschub der Mutter während der Schwangerschaft erhöhte das ADHS-Risiko um 21 %, ein Asthmaschub nach der Schwangerschaft um 25 %.257 Eine weitere Studie fand ebenfalls ein erhöhtes ADHS Risiko des Nachwuchses von Müttern mit Asthma, insbesondere für Mädchen.258
1.3.14. Diabetes eines Elternteils; Diabetes in der Schwangerschaft (+ 40 %)
Eine Kohortenstudie an über 5 Millionen Personen fand ein erhöhtes ADHS-Risiko der Kinder, wenn ein Elternteil Diabetes hatte.259
Diabetes der Mutter vor oder während der Schwangerschaft erhöht das Risiko des Nachwuchses für ADHS und ASS.260261262
Diabetes mellitus oder Typ 1-Diabetes mellitus der Mutter vor der Schwangerschaft erhöhte das ADHS-Risiko der Kinder um 40 %, Typ-1-Diabetes mellitus des Vaters um 20 %.
Eine weitere Studie fand ein 2,4-faches ADHS-Risiko von Kindern von Müttern mit Diabetes mellitus und ein 3,7-faches ADHS Risiko von männlichen Nachkommen von Müttern mit Diabetes mellitus. Es wurden keine Unterschiede zwischen Schwangerschaftsdiabetes und anderweitiger Diabetes gefunden.263
Kinder von nicht insulinbehandelten stark adipösen Müttern mit Typ-2-Diabetes zeigten 2-mal so häufig psychiatrische Störungen wie Nachkommen von normal gewichtigen Müttern. Kinder von insulinbehandelten stark adipösen Müttern mit Prägestationsdiabetes zeigten 2,7-mal so häufig psychiatrische Störungen wie Nachkommen von normal gewichtigen Müttern.264
1.3.15. Migräne der Eltern (+ 37 %)
Eine Kohortenstudie an n = 250.517 Teilnehmern fand für Kinder von Müttern, nicht aber von Vätern mit MIgraine ein erhöhtes Risiko für:265
- ADHS (+ 37 %)
- Bipolarer Störung (+ 35 %)
- Depression (+ 33 %)
1.3.16. Anämie (Blutarmut) der Mutter in der Schwangerschaft (+ 31 %)
Eine Kohortenuntersuchung an 532.232 Kindern über 23 Jahre zeigte, dass Anämie der Mutter in den ersten 30 Schwangerschaftswochen das ADHS-Risiko um 31 % erhöht, während eine Anämie in späteren Schwangerschaftswochen das Risiko kaum noch (um 1,4 %) erhöhte. 266
In einer kleinen libanesischen Korrelationsstudie (n = 119) erhöhte eine Anämie der Mutter während der Schwangerschaft das ADHS-Risiko auf das 3,7-fache (OR = 3,654).215
1.3.17. Infektionen der Mutter in der Schwangerschaft
1.3.17.1. Infektionen allgemein (+ 30 %)
Eine Metastudie fand eine Erhöhung des ADHS-Risikos des Nachwuchses durch Infektionen der Mutter in der Schwangerschaft um 30 %.267
Mycoplasma-Antikörper bei der Geburt gingen mit einem um 30 % erhöhten ADHS-Risiko im späteren Leben einher.268
1.3.17.2. Virusinfektionen
Eine Virusinfektion der Mutter in der Schwangerschaft erhöht das ADHS-Risiko für den Nachwuchs269 und kann die Entwicklung des dopaminergen Systems des Ungeborenen beeinflussen, z.B.:270
- Masern
- Varizellen
- Röteln
- auch subklinische Röteln-Infektion der Mutter in der Schwangerschaft erhöht Risiko des Kindes im Alter von 8 bis 9 Jahren für:271
- ASS
- ADHS
- Entwicklungsstörungen
- auch subklinische Röteln-Infektion der Mutter in der Schwangerschaft erhöht Risiko des Kindes im Alter von 8 bis 9 Jahren für:271
- Enterovirus 71
- Herpesvirus 6
- Influenza A
- Zytomegalievirus (+ 30 %)268
Weniger gesichert scheint ein Zusammenhang bei
- Streptokokken-Infektion
- Mittelohrentzündung (Otitis media)
Geburtskomplikationen wie mütterliche Infektionen während der Schwangerschaft, mütterlicher Stress während der Schwangerschaft oder Sauerstoffmangel bei der Geburt sind auch Risiko erhöhend für andere Störungsbilder272, wie z.B. Schizophrenie244, ASS273 oder Depression.272
1.3.18. Fetales Entzündungssyndrom (FIRS) (+ 27 %)
Kinder, die von einer Mutter mit fetalem Entzündungssyndrom (FIRS, einer Entzündung der Plazenta während der Schwangerschaft) geboren wurden, hatten ein erhöhtes Risiko von:274
- neuropsychiatrische Störungen diagnostiziert (OR = 1,21)
- ASS (OR = 1,35)
- ADHS (OR = 1,27)
- Conduct disoder (OR = 1,50)
- PTBS (OR = 2,46)
1.3.19. Unstillbarer Brechreiz (Hyperemesis gravidarum) (+ 16 %)
Unstillbarer Brechreiz und Erbrechen der Mutter während der Schwangerschaft führte zu einem erhöhten ADHS-Risiko des Nachwuchses um 16 % (bei 2 Kohortenstudien) bis 287 %.275
1.3.20. Mineralstoff- und Vitaminmangel in der Schwangerschaft
Mehr hierzu unter ⇒ Vitamine, Mineralstoffe, Nahrungsergänzungsmittel bei ADHS sowie ⇒ Ernährung und Diät bei ADHS im Kapitel ⇒ Behandlung und Therapie.
1.3.20.1. D3-Mangel in der Schwangerschaft
Vitamin D3-Mangel während der Schwangerschaft und nach der Geburt bewirkt dauerhafte Fehlentwicklungen des Gehirns, und dort insbesondere des dopaminergen Systems.276277278279 In einer Metastudie zeigten Studien mit größeren Stichprobengrößen und strengeren Definitionen von Vitamin-D-Mangel positive Assoziationen für ADHS280281 und Schizophrenie.281
Die Häufigkeit von ADHS-ähnlichen Symptomen bei Kindern verringerte sich je 10 ng/ml Anstieg des mütterlichen 25(OH)D-Spiegels um 11 %.282 Eine weitere Studie fand ebenfalls, dass ein reletiv niedriger 25(OH)D-Spiegel der Miutter in der 24. Schwangerschaftswoche das Risiko für ADHS und ASS und die ASS-Schwere erhöhte. Eine hohe D3-Supplementation (2.800 iE/Tag) in der Schwangerschaft erhöhte weder das ADHS-Risiko noch das ASS-Risiko.283 Dies könnte unserer Ansicht nach darauf hindeuten, dass der D3-Spiegel insbesondere vor der 24. Schwangerschaftswoche der ASS- und ADHS-Risiko beeinflusst.
Die Schwere der ADHS-Symptome des Nachwuchses korrelierte mit dem Maß des mütterlichen 25(OH)D-Mangels.284285
D3-Mangel in der Schwangerschaft verringert den Dopaminumsatz im Gehirn des Nachwuchses286 unter Verringerung von COMT.287
Verringerte Vitamin D3-Serumwerte der Mutter in der 30. Schwangerschaftswoche korrelierten signifikant mit Depressionen des Nachwuchses bis zum 22. Lebensjahr, nicht aber mit ADHS.288 Verringerte D3-Werte der Mutter in der 35. bis 37 .Schwangerschaftswoche korrelierten signifikant mit erhöhten ADHS-Anzeichen bei den Kindern mit 6 Monaten und 2 Jahren.221
Dabei ist offen, ob D3-Mangel in anderen Schwangerschaftswochen andere Auswirkungen hat, da sich spätere psychische Störungen insbesondere zu jeweils denjenigen Gehirnregionen in Bezug stehen, die in der betreffenden Schwangerschaftswoche gerade einen Entwicklungsschub haben. Mehr hierzu unter ⇒ Stresseinwirkung in verschiedenen Gehirnentwicklungsstadien im Kapitel ⇒ Stressschäden – Auswirkungen von frühem / langanhaltendem Stress.
Eine umfangreiche Langzeituntersuchung in Spanien zu Vitamin D3-Mangel in der Schwangerschaft fand keine Korrelation zwischen niedrigen D3-Blutwerten der Mutter in der Schwangerschaft und ADHS der Kinder im Alter von 5 bis 18 Jahren.289 Ebenso fand eien norwegische Kohortenstudie keinen Zusammenhang des mütterlichen Voitamin-D-Spiegels in der Schwangerschaft auf das spätere ADHS-Risiko des Nachwuches, wohl aber ein Zusammenhang zwischen ASS und (daraus folgend) verringerten Vitamin-D-Spiegeln und ADHS auf (daraus folgend) niedrigeren Omega-3-Spiegeln.290
Eine Studie in Finnland fand dagegen eine deutliche Korrelation zwischen einem verringerten D3-Spiegel der Mutter in der Schwangerschaft und ADHS der Kinder. Die Risikoerhöhung erreichte bis über 50 %.291
Nagetiere, deren Mütter eine Vitamin-D-Mangel hatten, zeigten typische ADHS-Symptome:292
- Hyperaktivität
- Impulsivität
- Verringertes Sozialverhalten
- Veränderte Frequenz der Ultraschallvokalisation
- Häufigere Selbstbeschmutzung
- Verringertes Grooming der Welpen
- Verringerte Wachstumsfaktoren NGF und GDNF
- Dünnere Kortikalschichten und größere Seitenventrikel
- Geringere Größe des Hippocampus und kleinere Seitenventrikel
1.3.20.2. Omega-3-Fettsäure-Spiegel
1.3.20.2.1. Beim Neugeborenen
Eine Metauntersuchung fand Hinweise darauf, dass ein höherer Omega-3-Fettsäure-Spiegel beim Neugeborenen das Risiko und die Schwere von ADHS sowie von Autismusspektrumsstörungen verringern kann. Möglicherweise könnte eine ausreichende Versorgung mit Omega-3-Fettsäure im letzten Schwangerschaftsdrittel dem entgegenwirken.293
1.3.20.2.2. In der Schwangerschaft
Eine weitere Studie fand ein um 13 % erhöhtes ADHS-Risiko des Nachwuchses im Alter von 7 Jahren durch ein erhöhtes Omega 6 zu Omega 3 - Verhältnis (hohe Omega 6 und niedrige Omega 3 - Werte).294
1.3.21. Depression der Eltern vor / während / nach der Schwangerschaft
Insbesondere bei Jungen scheinen die Schwere der Depression der Mutter in der Schwangerschaft sowie höhere zyklothymische, reizbare und ängstliche Temperamentwerte der Mutter relevante Risikofaktoren für die Entstehung von ADHS darzustellen.295
Eine groß angelegte Studie fand keinen kausalen Einfluss einer Depression, Ansgstörung oder Infektion der Mutter während der Schwangerschaft auf das Risiko von neurologischen Entwicklungsstörungen (ASS, ADHS, geistige Behinderung, zerebrale Lähmung oder Epilepsie) des Kindes.296
Eine Kohortenstudie fand
- Depression der Eltern erhöhte das Risiko der Nachkommen je nach Zeitpunkt des Auftretens der Depression für (Angaben in HR):297
- ADHS (pränatal 1,95 = um 95 % erhöht, beliebiger Zeitpunkt: 1,98 = um 98 % erhöht, postnatal: 2,0 = um 100 % erhöht)
- ASD (pränatal 1,76, beliebiger Zeitpunkt1,52)
- Tic-Störungen (pränatal 1,52, beliebiger Zeitpunkt 1,40)
- Entwicklungsverzögerung (pränatal 1,40, beliebiger Zeitpunkt 1,32, postnatal 1,24)
- Sprachentwicklungsstörung (pränatal 1,29, beliebiger Zeitpunkt 1,17)
- Entwicklungskoordinationsstörung (HR: 1,73, beliebiger Zeitpunkt 1,76, postnatal 1,78)
- Geistige Behinderung (beliebiger Zeitpunkt 1,26)
1.3.22. Bluthochdruck während der Schwangerschaft
Bluthochdruck in der Schwangerschaft erhöht das ADHS-Risiko der Nachkommen erheblich.208
Bluthochdruck ist mit genetisch vererblichen ADHS-Risiken verbunden. Es wird daher zu differenzieren sein, ob Bluthochdruck während der Schwangerschaft kausal das ADHS-Risiko erhöht oder ob erhöhter Blutdruck während der Schwangerschaft einen Ausdruck der genetischen Grundlast darstellt, die ADHS vermittelt.
1.3.23. Schlafmangel in der Schwangerschaft
Mädchen von Müttern mit einer Schlafdauer von weniger als 8 Stunden im letzten Schwangerschaftstrimester zeigten häufiger Hyperaktivität, Unaufmerksamkeit und ADHS-Gesamtwerte.298
Schlafprobleme während der Schwangerschaft korrelierten mit einem erhöhten Risiko für Neuroentwicklungsstörungen und Schlafprobleme in der frühen Kindheit.299, insbesondere
- verringerter und schlechterer Schlaf im zweiten Schwangerschaftstrimester korrelierte mit ADHS
- größere Schlafprobleme im ersten Trimester korrelierte mit ADHS
- Schlafprobleme im dritten Trimester korrelierte mit Schlafproblemen des Kindes
1.3.24. Testosteron in der Schwangerschaft
Eine pränatale Testosteron-Exposition korrelierte signifikant mit Unaufmerksamkeit und Hyperaktivität/Impulsivität des Nachwuchses.300 Erhöhte Testosteronwerte der Mutter in der Schwangerschaft korrelierten signifikant mit erhöhten ADHS-Anzeichen bei den Kindern mit 6 Monaten und 2 Jahren.221
1.3.25. Entzündungen während der Schwangerschaft
Perinatale Entzündungen korrelieren mit erhöhten ADHS-Symptomwerten bei Kindern im Alter von 8-9 Jahren und verstärken die genetische Veranlagung für ADHS (den Polygenic Risc Score).301302
1.4. Medikamente der Mutter in der Schwangerschaft als ADHS-Risiko (bis + 250 %)
Kinder mit ADHS hatten häufiger Mütter, die während der Schwangerschaft Medikamente einnahmen:44
Medikamenteneinnahme der Mutter während der Schwangerschaft:
- ADHS: 43,5 %
Wenn Stress/emotionale Probleme auftraten, lagen diese in folgendem Trimester:- nur 1./2. Trimester: 36,2 %
- nur 3. Trimester: 14,5 %
- gesamte Schwangerschaft: 49,3 %
- Nichtbetroffene: 31,4 %
Wenn Stress/emotionale Probleme auftraten, lagen diese in folgendem Trimester:- nur 1./2. Trimester: 31,1 %
- nur 3. Trimester: 46,9 %
- gesamte Schwangerschaft: 21,9 %
Die nachfolgende Liste ist nur beispielhaft und keineswegs vollständig.
1.4.1. Paracetamol (Acetaminophen) in der Schwangerschaft (+ 37 % bis + 250 %)
50 % aller Frauen verwenden Paracetamol in der Schwangerschaft.303
Die Einnahme von Paracetamol (in Nordamerika und Iran: Acetaminophen) während der Schwangerschaft erhöhte das Risiko von ADHS um bis zu 37 %. Schon eine kurzfristige Einnahme ist laut zwei sehr umfassenden Studien mit zusammen über 110.000 Teilnehmern schädlich.304305 Weitere Studien bestätigen dies.306307308 Kritisch hierzu Gilman et al.309 Während die bisherigen Untersuchungen auf Einnahmeberichten der Mütter basierten, fand eine Studie, die auf Blutspiegeln basiert, ein 2,3 bis 3,5-faches ADHS-Risiko und ein 1,6- bis 4,1-faches ASS-Risiko der Kinder bei Einnahme im zweiten oder dritten Schwangerschaftsdrittel.310
Das ADHS-Risiko durch Paracetamol (Acetaminophen) erhöht sich bei Einnahme311
- im zweiten Schwangerschafts-Trimester um 19 %
- im ersten und zweiten Trimester um 28 %
- im ersten bis dritten Trimester um 20 %
Eine Kohortenstudie an 116.000 Kindern zeigte, dass Fieber im ersten Trimester der Schwangerschaft das ADHS-Risiko um 31 % erhöht, mehrfaches Fieber um 164 %. Fieber erhöhte jedoch nur die Unaufmerksamkeit, nicht die Hyperaktivität/Impulsivität – dies galt auch für das zweite Trimester. Die Ergebnisse waren unabhängig davon, ob die Mutter Paracetamol (Acetaminophen) einnahm oder nicht.252
Eine Metastudie bestätigt das erhöhte ADHS und ASS-Risiko des Nachwuchses bei Einnahme von Paracetamol in der Schwangerschaft.312
Eine Metaanalyse von 22 Studien mit n = 367.775 Teilnehmern fand ein erhöhtes ADHS-Risiko durch Paracetamol in der Schwangerschaft, das durch sonstige Faktoren (wie Diagnosen der Eltern) unverändert blieb.313
Eine Studie stellt die bisherigen kritischen Ergebnisse infrage, indem sie auf bis dato nicht berücksichtigte ADHS-Diagnosen der Eltern abstellt.314 Ebenfalls zweifelnd Damkier.315 Eine weitere Studie fand keinen HInweis auf ein erhöhtes Risiko von ADHS oder ASS durhc Paracetamol in der Schwangerschaft.316
Eine Langzeitstudie analysierte Paracetamol, Methionin, Serin, Glycin und Glutamat im Nabelschnur-Plasma und fand bei erhöhten Paracetamol-Spiegeln ein sich parallel zum Anstieg des 8-Hydroxy-Desoxyguanosin-Spiegels im Nabelschnurblut erhöhendes ADHS-Risiko. Ein Anstieg der Methionin-, Glycin-, Serin- und 8-Hydroxy-Desoxyguanosin-Werte im Nabelschnurblut korrelierte mit einer signifikant höheren Wahrscheinlichkeit für ADHS im Kindesalter. Methionin und Glycin vermittelten zu je 22 % die Assoziation zwischen erhöhten Paracetamol-Werten und späterem ADHS.317
Die Schädigung der Entwicklung des Nachwuchses durch Paracetamol in der Schwangerschaft scheint mit über Veränderungen des Endocannabinoid-Pfades vermittelt zu werden.318
Paracetamol wird auch als eine mögliche Ursache für ASS verdächtigt.145
Ibuprofen soll dagegen kein ADHS-Risiko für das ungeborene Kind auslösen.
1.4.2. SSRI, Antidepressiva in der Schwangerschaft (0 % bis + 63 %)
SSRI in der Schwangerschaft korrelieren nach zwei Metaanalysen von 18 Studien mit signifikant erhöhtem Risiko der Kinder für ADHS (OR = 1,26 = ca + 26 %) und ASS (OR = 1,42 = ca + 42 %). Es ist nicht eindeutig, ob dies aus den SSRI resultiert, oder aus eine Vererbung von psychischen Problemen der Mutter, wegen derer diese mit SSRI behandelt wurde, da auch bei einer Einnahme von SSRI oder SNRI durch die Mutter vor der Schwangerschaft, aber nicht in der Schwangerschaft das Risiko der Kinder für ADHS (OR = 1,63 = ca + 63 %) und ASS (OR = 1,39 = ca + 39 %) erhöht war.319320ein fürsorglich sollten SSRI während der Schwangerschaft mit äußerster Vorsicht verwendet werden.
Eine Metastudie fand bei 7 von 8 Studien über SSRI während der Schwangerschaft kein erhöhtes ADHS-Risiko der Kinder.321 Ebenso eine weitere Studie.322 Nach einer Studie erhöhten Antidepressiva während der Schwangerschaft die Wahrscheinlichkeit von späterem ADHS beim Kind um das 1,81-fache.323
1.4.3. β-2-Adrenalin-Rezeptor-Agonisten in der Schwangerschaft (+ 30 %)
Die Einnahme von β-2-Adrenalin-Rezeptor-Agonisten während der Schwangerschaft erhöht das Risiko von ADHS für das Kind um bis zu 30 %.324
1.4.4. Pregabalin in der Schwangerschaft (+ 29 %)
Eine pränatale Pregabalin-Exposition erhöhte das ADHS-Risiko um 29 %, was sich jedoch bei Berücksichtigung aktiver Komparatoren abschwächte.325
1.4.5. Antibiotika in der Schwangerschaft (+ 14 %)
Mehrere Metastudien fanden ein um 14 % erhöhtes ADHS Risiko durch Antibiotika-Einnahme der Mutter während der Schwangerschaft.326327
1.4.6. Antiepiletika: Valproat in der Schwangerschaft (+ 12 %)
Valproat in der Schwangerschaft soll das Risiko von ADHS für das Ungeborene erhöhen.328
Valproate sind die Salze der Valproinsäure.
Bei Einnahme von Antiepileptika in der Schwangerschaft fand eine Kohortenstudie wurde bei Kindern bis 6 Jahren (was für die Diagnose aller ADHS-Betroffenen noch zu früh ist) ein erhöhtes Risiko für neurologische Entwicklungsstörungen:
- Natriumvalproat zusammen mit anderen Antipsychotika: 15 %
- Natriumvalproat als Monotherapie: 12 %
- Lamotrigin 6,3 % (aufgrund der geringen Teilnehmerzahl dieser Gruppe kein statistisch signifikanter Anstieg)
- Carbamazepin 2 % (kein signifikanter Anstieg)
- Kinder, die keinem dieser Medikamente in der Schwangerschaft ausgesetzt waren: 1,8 %
ASS war die häufigste Diagnose. 2 % der Kinder von medikamentierten Müttern erhielten bereits im Alter bis 6 Jahren eine ADHS-Diagnose, 1,5 % Dyspraxie. Bei den Kontrollen hatte kein Kind eine ADHS-Diagnose.329
Eine groß angelegte Kohortenstudie fand ein erhöhtes Risiko für ASS (+ 110 %) und ADHS (+ 43 %) bei Kindern von Müttern, die während der Schwangerschaft Antiepileptika eingenommen hatten. Das Risiko war vor allem auf Valproat zurückzuführen.330 Im Vergleich zu Müttern mit Epilepsie, die während der Schwangerschaft kein Antiepileptikum einnahmen, was das Risiko für ASS nur noch um 38 % erhöht.
1.4.7. Corticoide in der Schwangerschaft
Eine Cortisolgabe während der Schwangerschaft führt zu langfristigen Veränderungen des Gehirns des Ungeborenen und erhöht das Risiko von ADHS.331 Die Kinder erleiden eine lebenslange Veränderung des dopaminergen Systems und der HPA-Achse, die offenbar durch Änderungen der Expression und des Verhältnisses der MR- und GR-Rezeptoren verursacht wird.332 Die bei diesen Kindern beschriebenen ADHS-Symptome könnten unserer Ansicht nach möglicherweise die Folge einer HPA-Achsen-Veränderung sein.
⇒ Corticosteroid-Rezeptor-Hypothese der Depression
Eine hohe Cortisol-Exposition des Fötus oder Neugeborenen kann eine Methylierung des GAD1 / GAD67-Gens bewirken, welches das Schlüsselenzym Glutamat-zu-GABA-synthetisierende Glutamat-Decarboxylase 1 codiert und zu erhöhten Glutamatspiegeln führt. Dieser epigenetische Mechanismus kann das ADHS-Risiko der Kinder erhöhen.233
Eine Betamethason-Exposition in der Schwangerschaft erhöhte das ADHS-Risiko des Nachwuchses lediglich marginal.333334
Dexamethason in der Schwangerschaft von Mäusen erhöhte bei weiblichen Nachkommen die spontane Aktivität, während sie diese bei Männchen verringerte. Dexamethason in der Schwangerschaft regulierte die bei Weibchen die Dopamin-Signalisierung herunter und die Glutamat- und GABA-Signalisierung hoch.335
1.4.8. Valproinsäure in der Schwangerschaft
Nachkommen von Mäusen, die während der Schwangerschaft Valproinsäure erhielten, zeigten eine deutlich erhöhte Hyperaktivität und Veränderungen im Gyrus dentatus.336337 Zudem bestehen HInqeidse auf Verändeunrgen des histaminergen Systems und des Sozialverhaltens.338
Valproinsäure in der Schwangerschaft erhöht das Risko von ADHS, ASS, verminderten kognitiven Fähigkeiten und Sprachstörungen des Nachwuches.339 Daneben verursacht sie dosisabhängig, insbesondere bei mehr als 600 mg / Tag, bei 10 % der Kinder angeborene Fehlbildungen wie Neuralrohrdefekte, Herzanomalien, urogenitale Fehlbildungen (z.B. Hypospadie, Skelettfehlbildungen und orofaziale Spaltbildungen). Hochdosierte Folsäure vor und während der Schwangerschaft könnte das Risiko verringern. In der Muttermilch scheint die Valproinkonzentration geringm, weshalb Stillen damit keine Gefahr beinhalte.
1.4.9. Penicillineinnahme in der Schwangerschaft
Eine Einnahme von Penicillin durch die Mutter während der Schwangerschaft erhöhte ADHS-Risiko des Kindes. Das ADHS-Risiko wurden durch Penicillin selbst durch eine Einnahme 2 Jahre vor der Schwangerschaft erhöht. Eine mehrfache Penicillin-Einnahme erhöhte das ADHS-Risiko weiter.9
1.4.10. Keine Risikoerhöhung durch NSAIDs, normalen Koffeinkonsum, Benzodiazepine
Eine Kohortenstudie fand keine ADHS-Risikoerhöhung durch nichtsteroidale entzündungshemmende Medikamente (NSAIDs) in der Schwangerschaft.340
Koffeinkonsum während der Schwangerschaft unterhalb von 10 Tassen am Tag erhöhte das ADHS-Risiko nicht.341
Benzodiazepine in der Schwangerschaft scheinen das Risiko für Internalisierungsprobleme bei Kindern (Ängstlichkeit, emotionale Reagibilität, somatische Beschwerden), nicht aber für externalisierende Probleme (Hyperaktivität, Aggressivität) zu erhöhen.342 Eine Kohortenstudie, die Geschwister mit und ohne Benzodiazepin-Einnahme der Mutter in der Schwangerschaft verglich, fand keine signifikante Risikoerhöhung für ADHS oder ASS durch Benzodiazepine, Die Autoren vermuten eher einen Zusammenhang mit einer genetischen Disposition der Mutter.343 Eine Metastudie kam ebenfalls zu dem Ergebnis, dass für Benzodiazepine in der Schwangerschaft bislang keine relevante Erhöhung des ADHS-Risikos des Nachwuchses festgestellt wurde, auch wenn eine Studie Hinweise auf eine leichte Erhöhung bei einer Benzodiazepin-Monotherapie im letzten Schwangerschaftstrimester gab.344 Eine Studie fand eine leichte Erhöhung des ADHS-Risikos um 15 % bei Benzodiazepin-Einnahme in der Schwangerschaft.345
Diese Liste über Medikamente der Mutter in der Schwangerschaft als ADHS-Risiko ist nur beispielhaft und keineswegs vollständig.
1.5. Sonstige Schwangerschaftsumstände (bis + 30 %)
1.5.1. Erstgeborenenstatus
Eine große schwedische Kohortenstudie fand, dass Erstgeborene ein höheres Risiko für Depressionen und ADHS in der Kindheit und für endokriner Erkrankungen nach dem 50. Lebensjahr haben.346
1.5.2. Besonders kurze oder lange Abstände zur vorigen Schwangerschaft (+ 25 % bis + 30 %)
Besonders kurze oder besondere lange Abstände zur Schwangerschaft mit dem vorausgehenden Geschwisterkinde erhöhte das ADHS-Risiko um 30 % (unter 6 Monate) bzw. 12 % (60 – 119 Monate) bis 25 % (120 Monate und mehr).347
1.5.3. Proteinmangel während Schwangerschaft und nachgeburtlich
Ratten, deren Mütter 15 Tage vor der Zeugung und dann weiter während der Stillzeit eine proteinarme Ernährung erhielten, waren auf frühkindliche Stressoren (intraperitoneale Injektion von Deltamethrin, Lipopolysaccharid oder beides) erheblich anfälliger, ADHS-Symptome wie Hyperaktivität, Aufmerksamkeitsprobleme und verringerte Angst zu entwickeln.348
1.6. Schwangerschaftsumstände ohne Einfluss auf ADHS
Für folgende Faktoren fand sich kein Einfluss auf das ADHS-Risiko des Ungeborenen:
- Jod/Kreatinin-Verhältnisses im Urin der Mutter während der Schwangerschaft
- Eine große Studie an 3 Kohorten fand keinen Einfluss auf das ADHS oder das ASS-Risiko349
- Migration der Mutter
- Eine Metastudie fand keine Hinweise auf ein erhöhtes ADHS-Risiko durch Migration der Mutter, anders aber bei ASS.350
- Eisenspiegel der Mutter
- Eine Studie fand keinen Einfluss des Eisenspiegels der Mutter während der Schwangerschaft auf das ADHS-Risiko des Kindes im Alter von 7 Jahren351
- Künstliche Befruchtung durch Intrazytoplasmatische Spermieninjektion (ICSI)352
1.7 Präventive Faktoren
1.7.1. Ballaststoffeinnahme der Mutter während der Schwangerschaft
Eine ballaststoffreiche Ernährung der Mutter in der Schwangerschaft verringerte das ADHS-Risiko des Nachwuchses um bis zu 20 %.353
Dies war unabhängig von der genetischen Veranlagung für ADHS, von ungesunder Ernährung und von soziodemografischen Faktoren.
Ballaststoffe erhöhen kurzkettige Fettsäuren im Darm, was allgemein das Risiko psychischer Problem verringert. Mehr hierzu im Abschnitt Mikrobiom und kurzkettige Fettsäuren (SCFA) bei ADHS des Beitrags Darm-Hirn-Achse als Ursache von ADHS
López-Vicente M, Szekely E, Lafaille-Magnan ME, Morton JB, Oberlander TF, Greenwood CMT, Muetzel RL, Tiemeier H, Qiu A, Wazana A, White T (2024): Examining the interaction between prenatal stress and polygenic risk for attention-deficit/hyperactivity disorder on brain growth in childhood: Findings from the DREAM BIG consortium. Dev Psychobiol. 2024 May;66(4):e22481. doi: 10.1002/dev.22481. PMID: 38538956. ↥
Liu D, Ren Y, Wu T, Shen H, Yan P, Meng Y, Zhang Q, Zhang J, Bai P, Zhao J (2022): Parental smoking exposure before and during pregnancy and offspring attention-deficit/hyperactivity disorder risk: A Chinese child and adolescent cohort study. Front Public Health. 2022 Oct 10;10:1017046. doi: 10.3389/fpubh.2022.1017046. PMID: 36299741; PMCID: PMC9589153. n = 2.477 Familien ↥
Yohn, Caruso, Blendy (2019): Effects of nicotine and stress exposure across generations in C57BL/6 mice, Stress, 22:1, 142-150, DOI: 10.1080/10253890.2018.1532991 ↥
McCarthy, Zhang, Wilkes, Vaillancourt, Biederman, Bhide (2022): Nicotine and the developing brain: Insights from preclinical models. Pharmacol Biochem Behav. 2022 Feb 14:173355. doi: 10.1016/j.pbb.2022.173355. PMID: 35176350. ↥ ↥
McCarthy, Morgan, Lowe, Williamson, Spencer, Biederman, Bhide (2018): Nicotine exposure of male mice produces behavioral impairment in multiple generations of descendants. PLoS Biol 16(10): e2006497. https://doi.org/10.1371/journal.pbio.2006497 ↥ ↥ ↥ ↥ ↥ ↥ ↥
Buck, Sanders, Wageman, Knopik, Stitzel, O’Neill (2019): Developmental nicotine exposure precipitates multigenerational maternal transmission of nicotine preference and ADHD-like behavioral, rhythmometric, neuropharmacological, and epigenetic anomalies in adolescent mice. Neuropharmacology. 2019 May 1;149:66-82. doi: 10.1016/j.neuropharm.2019.02.006. PMID: 30742847; PMCID: PMC7096676. ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥
Zhang M, Zhang D, Dai J, Cao Y, Xu W, He G, Wang Z, Wang L, Li R, Qiao Z. Paternal nicotine exposure induces hyperactivity in next-generation via down-regulating the expression of DAT. Toxicology. 2020 Feb 15;431:152367. doi: 10.1016/j.tox.2020.152367. Epub 2020 Jan 13. PMID: 31945395. ↥ ↥
van Mil, Steegers-Theunissen, Bouwland-Both, Verbiest, Rijlaarsdam, Hofman, Steegers, Heijmans, Jaddoe, Verhulst, Stolk, Eilers, Uitterlinden, Tiemeier (2014): DNA methylation profiles at birth and child ADHD symptoms. J Psychiatr Res. 2014 Feb;49:51-9. doi: 10.1016/j.jpsychires.2013.10.017. PMID: 24290898. ↥
Holmgaard S, Kiilerich P, Borbye-Lorenzen N, Skogstrand K (2024): Maternal pre-pregnancy and prenatal penicillin, neonatal inflammation and growth factors are associated to ADHD in the offspring. Brain Behav Immun Health. 2024 Feb 10;36:100739. doi: 10.1016/j.bbih.2024.100739. PMID: 38425710; PMCID: PMC10901857. n = 553.766 ↥ ↥
Koehlmoos TP, Lee E, Wisdahl J, Donaldson T (2023): Fetal alcohol spectrum disorders prevention and clinical guidelines research-workshop report. BMC Proc. 2023 Aug 15;17(Suppl 12):19. doi: 10.1186/s12919-023-00272-z. PMID: 37580722; PMCID: PMC10426045. ↥
Pagnin, Zamboni Grecco, Furtado (2018): Prenatal alcohol use as a risk for attention-deficit/hyperactivity disorder. Eur Arch Psychiatry Clin Neurosci. 2018 Oct 23. doi: 10.1007/s00406-018-0946-7. n = 81 ↥
van de Bor (2019): Fetal toxicology. Handb Clin Neurol. 2019;162:31-55. doi: 10.1016/B978-0-444-64029-1.00002-3. ↥
Hoang HH, Tran ATN, Nguyen VH, Nguyen TTB, Nguyen TAP, Le DD, Jatho A, Onchonga D, Duong TV, Nguyen MT, Tran BT (2021): Attention Deficit Hyperactivity Disorder (ADHD) and Associated Factors Among First-Year Elementary School Students. J Multidiscip Healthc. 2021 Apr 30;14:997-1005. doi: 10.2147/JMDH.S301091. PMID: 33958873; PMCID: PMC8096448. ↥ ↥
Wang, Martin, Lei, Hausknecht, Ishiwari, Richards, Haj-Dahmane, Shen (2020): Prenatal Ethanol Exposure Leads to Attention Deficits in Both Male and Female Rats. Front Neurosci. 2020 Jan 24;14:12. doi: 10.3389/fnins.2020.00012. PMID: 32038156; PMCID: PMC6992663. ↥
Cowell, Wright (2017): Sex-Specific Effects of Combined Exposure to Chemical and Non-chemical Stressors on Neuroendocrine Development: a Review of Recent Findings and Putative Mechanisms. Current environmental health reports, 4(4), 415-425. REVIEW ↥ ↥ ↥
Gerstner T, Saevareid HI, Johnsen ÅR, Løhaugen G, Skranes J (2023): Sleep disturbances in Norwegian children with fetal alcohol spectrum disorders (FASD) with and without a diagnosis of attention-deficit hyperactivity disorder or epilepsy. Alcohol Clin Exp Res. 2023 Feb 21. doi: 10.1111/acer.15009. Epub ahead of print. PMID: 36811179. n = 53 ↥
Fransquet, Hutchinson, Olsson, Wilson, Allsop, Najman, Elliott, Mattick, Saffery, Ryan (2016): Triple B Research Consortium. Perinatal maternal alcohol consumption and methylation of the dopamine receptor DRD4 in the offspring: the Triple B study. Environ Epigenet. 2016 Dec 7;2(4):dvw023. doi: 10.1093/eep/dvw023. PMID: 29492300; PMCID: PMC5804537. n = 844 ↥
Schneider, Moore, Barnhart, Larson, DeJesus, Mukherjee, Nickles, Converse, Roberts, Kraemer (2005): Moderate-level prenatal alcohol exposure alters striatal dopamine system function in rhesus monkeys. Alcohol Clin Exp Res. 2005 Sep;29(9):1685-97. doi: 10.1097/01.alc.0000179409.80370.25. PMID: 16205369. ↥
Lee, Park, Ryu, Shin, Ko, Han, Koren, Cho (2015): Changes in the methylation status of DAT, SERT, and MeCP2 gene promoters in the blood cell in families exposed to alcohol during the periconceptional period. Alcohol Clin Exp Res. 2015 Feb;39(2):239-50. doi: 10.1111/acer.12635. PMID: 25656446. ↥
Shabanov, Lebedev, Bychkov (2012): [The effect of ethanol exposure in pregnancy on maturation of monoaminergic systems in the developing rat bran]. Ross Fiziol Zh Im I M Sechenova. 2012 Feb;98(2):202-11. Russian. PMID: 22650063. ↥
Schneider, Moore, Barr, Larson, Kraemer (2011): Moderate prenatal alcohol exposure and serotonin genotype interact to alter CNS serotonin function in rhesus monkey offspring. Alcohol Clin Exp Res. 2011 May;35(5):912-20. doi: 10.1111/j.1530-0277.2010.01421.x. PMID: 21294753; PMCID: PMC3083456. ↥
De Nicolò, Carito, Fiore, Laviola (2014): Aberrant behavioral and neurobiologic profiles in rodents exposed to ethanol or red wine early in development. Curr. Dev. Disord. Rep. 2014;1:173–180. doi: 10.1007/s40474-014-0023-5. ↥
Kazemi, Huang, Avci, Akay, Akay (2021): Investigating the effects of chronic perinatal alcohol and combined nicotine and alcohol exposure on dopaminergic and non-dopaminergic neurons in the VTA. Sci Rep. 2021 Apr 22;11(1):8706. doi: 10.1038/s41598-021-88221-8. PMID: 33888815; PMCID: PMC8062589. ↥
Haan, Sallis, Ystrom, Njølstad, Andreassen, Reichborn-Kjennerud, Munafò, Havdahl, Zuccolo (2021): Maternal and offspring genetic risk score analyses of fetal alcohol exposure and attention-deficit hyperactivity disorder risk in offspring. Alcohol Clin Exp Res. 2021 Sep 6. doi: 10.1111/acer.14692. PMID: 34486127. ↥
Schwenke, Fasching, Faschingbauer, Pretscher, Kehl, Peretz, Keller, Häberle, Eichler, Irlbauer-Müller, Dammer, Beckmann, Schneider (2018): Predicting attention deficit hyperactivity disorder using pregnancy and birth characteristics. Arch Gynecol Obstet. 2018 Sep 8. doi: 10.1007/s00404-018-4888-0. n = 573 ↥
Kjaer Weile, Wu, Hegaard, Kesmodel, Henriksen, Nohr (2019: Alcohol intake in early pregnancy and risk of Attention-Deficit Hyperactivity Disorder (ADHD) in children up to 19 years of age: a cohort study. Alcohol Clin Exp Res. 2019 Nov 19. doi: 10.1111/acer.14243. n = 48.072 ↥
Reilhac, Garlantézec, Lacroix, Rouget, Warembourg, Monfort, Le Gléau, Cordier, Viel, Chevrier (2019): Prenatal exposure to glycol ethers and response inhibition in 6-year-old children: The PELAGIE cohort study. Environ Res. 2019 Nov 21:108950. doi: 10.1016/j.envres.2019.108950. ↥
San Martin Porter, Maravilla, Betts, Alati (2019): Low-moderate prenatal alcohol exposure and offspring attention-deficit hyperactivity disorder (ADHD): systematic review and meta-analysis. Arch Gynecol Obstet. 2019 Aug;300(2):269-277. doi: 10.1007/s00404-019-05204-x. REVIEW ↥
O’Neill J, O’Connor MJ, Kalender G, Ly R, Ng A, Dillon A, Narr KL, Loo SK, Alger JR, Levitt JG (2022): Combining neuroimaging and behavior to discriminate children with attention deficit-hyperactivity disorder with and without prenatal alcohol exposure. Brain Imaging Behav. 2022 Feb;16(1):69-77. doi: 10.1007/s11682-021-00477-w. PMID: 34089460; PMCID: PMC8643366. ↥
Willoughby MT, Pek J, Greenberg MT; Family Life Project Investigators (2012): Parent-reported Attention Deficit/Hyperactivity symptomatology in preschool-aged children: factor structure, developmental change, and early risk factors. J Abnorm Child Psychol. 2012 Nov;40(8):1301-12. doi: 10.1007/s10802-012-9641-8. PMID: 22581375; PMCID: PMC3461245. ↥
Sourander A, Sucksdorff M, Chudal R, Surcel HM, Hinkka-Yli-Salomäki S, Gyllenberg D, Cheslack-Postava K, Brown AS (2019): Prenatal Cotinine Levels and ADHD Among Offspring. Pediatrics. 2019 Mar;143(3):e20183144. doi: 10.1542/peds.2018-3144. PMID: 30804074; PMCID: PMC6398365. ↥ ↥
Banerjee TD, Middleton F, Faraone SV (2007): Environmental risk factors for attention-deficit hyperactivity disorder. Acta Pædiatrica 2007;96, 1269–74. Zitiert nach Philipsen, Heßlinger, Tebartz van Elst (2008): AufmerksamkeitsdefizitHyperaktivitätsstörung im Erwachsenenalter – Diagnostik, Ätiologie und Therapie (ÜBERSICHTSARBEIT), Deutsches Ärzteblatt, Jg. 105, Heft 17, 25. April 2008, Seite 311 – 317, 313 ↥
Huang L, Wang Y, Zhang L, Zheng Z, Zhu T, Qu Y, Mu D (2018): Maternal Smoking and Attention-Deficit/Hyperactivity Disorder in Offspring: A Meta-analysis. Pediatrics. 2018 Jan;141(1):e20172465. doi: 10.1542/peds.2017-2465. PMID: 29288161. REVIEW ↥ ↥ ↥
He Y, Chen J, Zhu LH, Hua LL, Ke FF (2017): Maternal Smoking During Pregnancy and ADHD: Results From a Systematic Review and Meta-Analysis of Prospective Cohort Studies. J Atten Disord. 2020 Oct;24(12):1637-1647. doi: 10.1177/1087054717696766. PMID: 29039728. METASTUDY, N = 17.304 ↥
Minatoya, Araki, Itoh, Yamazaki, Kobayashi, Miyashita, Sasaki, Kishi (2019): Prenatal tobacco exposure and ADHD symptoms at pre-school age: the Hokkaido Study on Environment and Children’s Health. Environ Health Prev Med. 2019 Dec 7;24(1):74. doi: 10.1186/s12199-019-0834-4. ↥ ↥ ↥
Godleski S, Shisler S, Colton K, Leising M (2024): Prenatal Tobacco Exposure and Behavioral Disorders in Children and Adolescents: Systematic Review and Meta-Analysis. Pediatr Rep. 2024 Aug 31;16(3):736-752. doi: 10.3390/pediatric16030062. PMID: 39311325; PMCID: PMC11417955. REVIEW ↥
Schwenke, Fasching, Faschingbauer, Pretscher, Kehl, Peretz, Keller, Häberle, Eichler, Irlbauer-Müller, Dammer, Beckmann, Schneider (2018): Predicting attention deficit hyperactivity disorder using pregnancy and birth characteristics. Arch Gynecol Obstet. 2018 Sep 8. doi: 10.1007/s00404-018-4888-0. ↥ ↥
Wang, Hu, Chen, Xue, Du (2019): Prenatal Tobacco Exposure Modulated the Association of Genetic variants with Diagnosed ADHD and its symptom domain in children: A Community Based Case-Control Study. Sci Rep. 2019 Mar 12;9(1):4274. doi: 10.1038/s41598-019-40850-w. ↥
Zambrano-Sánchez, Martínez-Cortés, Poblano, Dehesa-Moreno, Vázquez-Urbano, Del Río-Carlos (2019): Maternal smoking during pregnancy and physiological anxiety in children with attention deficit hyperactivity disorder. Appl Neuropsychol Child. 2019 Jul 3:1-8. doi: 10.1080/21622965.2019.1632708. ↥
McIntosh DE, Mulkins RS, Dean RS (1995): Utilization of maternal perinatal risk indicators in the differential diagnosis of ADHD and UADD children. Int J Neurosci. 1995 Mar;81(1-2):35-46. doi: 10.3109/00207459509015297. PMID: 7775071. n = 265 ↥
Xavier J, Singh S, Kumari P, Ravichandiran V (2022): Neurological repercussions of neonatal nicotine exposure: A review. Int J Dev Neurosci. 2022 Feb;82(1):3-18. doi: 10.1002/jdn.10163. PMID: 34913189. REVIEW ↥
Xie T, Mao Y (2024): The causal impact of maternal smoking around birth on offspring ADHD: A two-sample Mendelian randomization study. J Affect Disord. 2024 Jan 22:S0165-0327(24)00215-5. doi: 10.1016/j.jad.2024.01.196. Epub ahead of print. PMID: 38266926. n = 246.888 ↥
Fleming M, Fitton CA, Steiner MFC, McLay JS, Clark D, King A, Mackay DF, Pell JP (2017): Educational and Health Outcomes of Children Treated for Attention-Deficit/Hyperactivity Disorder. JAMA Pediatr. 2017 Jul 3;171(7):e170691. doi: 10.1001/jamapediatrics.2017.0691. PMID: 28459927; PMCID: PMC6583483. n = 766.244 ↥
Lipińska, Słopień, Pytlińska, Słopień, Wolańczyk, Bryńska (2021): The role of factors associated with the course of pregnancy and childbirth in attention deficit hyperactivity disorder (ADHD). Psychiatr Pol. 2021 Jun 30;55(3):659-673. English, Polish. doi: 10.12740/PP/OnlineFirst/110686. PMID: 34460889. n = 311 ↥ ↥ ↥ ↥
Deng, Yang, Wang, Zhou, Wang, Zhang, Niu (2022): Identification and Characterization of Influential Factors in Susceptibility to Attention Deficit Hyperactivity Disorder Among Preschool-Aged Children. Front Neurosci. 2022 Jan 31;15:709374. doi: 10.3389/fnins.2021.709374. PMID: 35173570; PMCID: PMC8841729. n = 7.938 ↥
Li Q, Cai X, Zhou H, Ma D, Li N (2024): Maternal smoking cessation in the first trimester still poses an increased risk of attention-deficit/hyperactivity disorder and learning disability in offspring. Front Public Health. 2024 Jul 16;12:1386137. doi: 10.3389/fpubh.2024.1386137. PMID: 39081356; PMCID: PMC11286595. ↥
Thapar, Rice (2020): Family-Based Designs that Disentangle Inherited Factors from Pre- and Postnatal Environmental Exposures: In Vitro Fertilization, Discordant Sibling Pairs, Maternal versus Paternal Comparisons, and Adoption Designs. Cold Spring Harb Perspect Med. 2020 Mar 9:a038877. doi: 10.1101/cshperspect.a038877.. PMID: 32152247. ↥
Zakariyah A, Al Qutub S, Kazim S, Alharbi R, Alharthi H, Alharbi H, Albassami M, Hanbazazh M, Mahnashi M (2024): Exposure to Smoking as a Predictor of ADHD Subtypes Among Children Within Saudi Arabia: An Observational Study. Tob Use Insights. 2024 Sep 9;17:1179173X241283765. doi: 10.1177/1179173X241283765. PMID: 39258266; PMCID: PMC11384971. n = 217 ↥ ↥
{Haan, Westmoreland, Schellhas, Sallis, Taylor, Zuccolo, Munafò (2022): Prenatal smoking, alcohol and caffeine exposure and offspring externalizing disorders: a systematic review and meta-analysis. Addiction. 2022 Apr 6. doi: 10.1111/add.15858. PMID: 35385887. ↥
Fuemmeler BF, Glasgow TE, Schechter JC, Maguire R, Sheng Y, Bidopia T, Barsell DJ, Ksinan A, Zhang J, Lin Y, Hoyo C, Murphy S, Qin J, Wang X, Kollins S (2022): Prenatal and Childhood Smoke Exposure Associations with Cognition, Language, and Attention-Deficit/Hyperactivity Disorder. J Pediatr. 2022 Dec 10:S0022-3476(22)01115-5. doi: 10.1016/j.jpeds.2022.11.041. PMID: 36513211. ↥
Polli, Kohlmeier (2019): Prenatal nicotine exposure in rodents: why are there so many variations in behavioral outcomes? Nicotine Tob Res. 2019 Oct 9. pii: ntz196. doi: 10.1093/ntr/ntz196. ↥
Neuman, Lobos, Reich, Henderson, Sun, Todd (2007): Prenatal smoking exposure and dopaminergic genotypes interact to cause a severe ADHD subtype. Biol Psychiatry. 2007 Jun 15;61(12):1320-8. ↥
Dryden (2007): Prenatal smoking increases ADHD risk in some children. Erläuterung zu Neuman et al. ↥
Sánchez-Mora, Richarte, Garcia-Martínez, Pagerols, Corrales, Bosch, Vidal, Viladevall, Casas, Cormand, Ramos-Quiroga, Ribasés (2015): Dopamine receptor DRD4 gene and stressful life events in persistent attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2015 Sep;168(6):480-491. doi: 10.1002/ajmg.b.32340. ↥
Polli, Kohlmeier (2019): Alterations in NMDAR-mediated signaling within the laterodorsal tegmental nucleus are associated with prenatal nicotine exposure. Neuropharmacology. 2019 Aug 19;158:107744. doi: 10.1016/j.neuropharm.2019.107744. ↥
Polli, Ipsen, Caballero-Puntiverio, Østerbøg, Aznar, Andreasen, Kohlmeier (2020): Cellular and Molecular Changes in Hippocampal Glutamate Signaling and Alterations in Learning, Attention, and Impulsivity Following Prenatal Nicotine Exposure. Mol Neurobiol. 2020 Jan 8. doi: 10.1007/s12035-019-01854-9. ↥ ↥
Buck, O’Neill, Stitzel (2019): Developmental nicotine exposure elicits multigenerational disequilibria in proBDNF proteolysis and glucocorticoid signaling in the frontal cortices, striata, and hippocampi of adolescent mice. Biochem Pharmacol. 2019 Aug 9;168:438-451. doi: 10.1016/j.bcp.2019.08.003. ↥
Alkam, Mamiya, Kimura, Yoshida, Kihara, Tsunoda, Aoyama, Hiramatsu, Kim, Nabeshima (2017): Prenatal nicotine exposure decreases the release of dopamine in the medial frontal cortex and induces atomoxetine-responsive neurobehavioral deficits in mice. Psychopharmacology (Berl). 2017 Jun;234(12):1853-1869. doi: 10.1007/s00213-017-4591-z. ↥
Buck, O’Neill, Stitzel (2020): Developmental nicotine exposure engenders intergenerational downregulation and aberrant posttranslational modification of cardinal epigenetic factors in the frontal cortices, striata, and hippocampi of adolescent mice. Epigenetics Chromatin. 2020 Mar 5;13(1):13. doi: 10.1186/s13072-020-00332-0. PMID: 32138755; PMCID: PMC7059320. ↥
Rizwan S, Manning JT, Brabin BJ (2007): Maternal smoking during pregnancy and possible effects of in utero testosterone: evidence from the 2D:4D finger length ratio. Early Hum Dev. 2007 Feb;83(2):87-90. doi: 10.1016/j.earlhumdev.2006.05.005. PMID: 16814493. ↥
Kalkbrenner AE, Zheng C, Yu J, Jenson TE, Kuhlwein T, Ladd-Acosta C, Grove J, Schendel D (2024): Method for Testing Etiologic Heterogeneity Among Non-Competing Diagnoses, Applied to Impact of Perinatal Exposures on Autism and Attention Deficit Hyperactivity Disorder. Epidemiology. 2024 Jul 18. doi: 10.1097/EDE.0000000000001760. PMID: 39024025. ↥
Batstra L, Neeleman J, Hadders-Algra M (2003): Can breast feeding modify the adverse effects of smoking during pregnancy on the child’s cognitive development? J Epidemiol Community Health. 2003 Jun;57(6):403-4. doi: 10.1136/jech.57.6.403. PMID: 12775783; PMCID: PMC1732491. ↥
Mahlberg, James, Bulten, Rodriguez, Kwan, Cairney (2019): Investigating the Association Between Exposure to Second Hand Smoke in utero and Developmental Coordination Disorder. Front Pediatr. 2019 Nov 5;7:438. doi: 10.3389/fped.2019.00438. eCollection 2019. ↥
Greenwood PB, DeSerisy M, Koe E, Rodriguez E, Salas L, Pereir FP, Herbstman J, Pagliaccio D, Margolis AE (2024): Combined and sequential exposure to prenatal second hand smoke and postnatal maternal distress is associated with cingulo-opercular global efficiency and attention problems in school-age children. Neurotoxicol Teratol. 2024 Feb 29:107338. doi: 10.1016/j.ntt.2024.107338. PMID: 38431065. ↥
Nygaard, Slinning, Moe, Fjell, Walhovd (2019): Mental health in youth prenatally exposed to opioids and poly-drugs and raised in permanent foster/adoptive homes: A prospective longitudinal study. Early Hum Dev. 2019 Oct 29;140:104910. doi: 10.1016/j.earlhumdev.2019.104910. ↥
Roncero, Valriberas-Herrero, Mezzatesta-Gava, Villegas, Aguilar, Grau-López (2020): Cannabis use during pregnancy and its relationship with fetal developmental outcomes and psychiatric disorders. A systematic review. Reprod Health. 2020 Feb 17;17(1):25. doi: 10.1186/s12978-020-0880-9. PMID: 32066469; PMCID: PMC7027300. REVIEW ↥
Bassalov H, Yakirevich-Amir N, Reuveni I, Monk C, Florentin S, Bonne O, Matok I (2024): Prenatal Cannabis Exposure and The Risk for Neuropsychiatric Anomalies in the Offspring: A Systematic Review and Meta-Analysis. Am J Obstet Gynecol. 2024 Jun 20:S0002-9378(24)00682-3. doi: 10.1016/j.ajog.2024.06.014. PMID: 38908654. METASTUDY ↥
Kaur S, Morales-Hidalgo P, Arija V, Canals J. Prenatal Exposure to Air Pollutants and Attentional Deficit Hyperactivity Disorder Development in Children: A Systematic Review. Int J Environ Res Public Health. 2023 Apr 7;20(8):5443. doi: 10.3390/ijerph20085443. PMID: 37107725; PMCID: PMC10138804. REVIEW ↥ ↥ ↥ ↥
Rezaei Kalantary, Jaffarzadeh, Rezapour, Hesami Arani (2020): Association between exposure to polycyclic aromatic hydrocarbons and attention deficit hyperactivity disorder in children: a systematic review and meta-analysis. Environ Sci Pollut Res Int. 2020 Apr;27(11):11531-11540. doi: 10.1007/s11356-020-08134-3. PMID: 32124297. n = 2.799, 6 Studien, REVIEW ↥
Perera FP, Tang D, Wang S, Vishnevetsky J, Zhang B, Diaz D, Camann D, Rauh V (2012): Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6-7 years. Environ Health Perspect. 2012 Jun;120(6):921-6. doi: 10.1289/ehp.1104315. PMID: 22440811; PMCID: PMC3385432. ↥ ↥
Perera FP, Chang HW, Tang D, Roen EL, Herbstman J, Margolis A, Huang TJ, Miller RL, Wang S, Rauh V (2014): Early-life exposure to polycyclic aromatic hydrocarbons and ADHD behavior problems. PLoS One. 2014 Nov 5;9(11):e111670. doi: 10.1371/journal.pone.0111670. PMID: 25372862; PMCID: PMC4221082. ↥ ↥
Pagliaccio D, Herbstman JB, Perera F, Tang D, Goldsmith J, Peterson BS, Rauh V, Margolis AE (2020): Prenatal exposure to polycyclic aromatic hydrocarbons modifies the effects of early life stress on attention and Thought Problems in late childhood. J Child Psychol Psychiatry. 2020 Nov;61(11):1253-1265. doi: 10.1111/jcpp.13189. Epub 2020 Jan 7. PMID: 31907931; PMCID: PMC7338249. ↥
Peterson, Bansal, Sawardekar, Nati, Elgabalawy, Hoepner, Garcia, Hao, Margolis, Perera, Rauh (2022): Prenatal exposure to air pollution is associated with altered brain structure, function, and metabolism in childhood. J Child Psychol Psychiatry. 2022 Feb 14. doi: 10.1111/jcpp.13578. PMID: 35165899. ↥ ↥
Perera FP, Wheelock K, Wang Y, Tang D, Margolis AE, Badia G, Cowell W, Miller RL, Rauh V, Wang S, Herbstman JB (2018): Combined effects of prenatal exposure to polycyclic aromatic hydrocarbons and material hardship on child ADHD behavior problems. Environ Res. 2018 Jan;160:506-513. doi: 10.1016/j.envres.2017.09.002. PMID: 28987706; PMCID: PMC5724364. ↥
Li, Chen, Ferber, Hirst, Odouli (2020): Association Between Maternal Exposure to Magnetic Field Nonionizing Radiation During Pregnancy and Risk of Attention-Deficit/Hyperactivity Disorder in Offspring in a Longitudinal Birth Cohort. JAMA Netw Open. 2020 Mar 2;3(3):e201417. doi: 10.1001/jamanetworkopen.2020.1417. PMID: 32207831; PMCID: PMC7093768. n = 1.454 Mutter-Kind Paare ↥
Cowell, Wright (2017): Sex-Specific Effects of Combined Exposure to Chemical and Non-chemical Stressors on Neuroendocrine Development: a Review of Recent Findings and Putative Mechanisms. Current environmental health reports, 4(4), 415-425. ↥
Fang, Strodl, Liu, Liu, Yin, Wen, Sun, Xian, Jiang, Jing, Jin, Wu, Chen (2019): Association between prenatal exposure to household inhalants exposure and ADHD-like behaviors at around 3 years of age: Findings from Shenzhen Longhua Child Cohort Study. Environ Res. 2019 Jul 26;177:108612. doi: 10.1016/j.envres.2019.108612. ↥
Forns, Sunyer, Garcia-Esteban, Porta, Ghassabian, Giorgis-Allemand, Gong, Gehring, Sørensen, Standl, Sugiri, Almqvist, Andiarena, Badaloní, Beelen, Berdel, Cesaroni, Charles, Eriksen, Estarlich, Fernandez, Forhan, Jaddoe, Korek, Lichtenstein, Lertxundi, Lopez-Espinosa, Markevych, de Nazelle, Raaschou-Nielsen, Nieuwenhuijsen, Pérez-Lobato, Philippat, Slama, Tiesler, Verhulst, von Berg, Vrijkotte, Nybo Andersen, Heude, Krämer, Heinrich, Tiemeier, Forastiere, Pershagen, Brunekreef, Guxens (2018): Air pollution exposure during pregnancy and symptoms of attention deficit and hyperactivity disorder in children in Europe. Epidemiology. 2018 Jun 19. doi: 10.1097/EDE.0000000000000874.; n = 29127 ↥
Aghaei, Janjani, Yousefian, Jamal, Yunesian (2019): Association between ambient gaseous and particulate air pollutants and attention deficit hyperactivity disorder (ADHD) in children; a systematic review. Environ Res. 2019 Mar 15;173:135-156. doi: 10.1016/j.envres.2019.03.030. REVIEW ↥
Chang YC, Chen WT, Su SH, Jung CR, Hwang BF (2022): PM2.5 exposure and incident attention-deficit/hyperactivity disorder during the prenatal and postnatal periods: A birth cohort study. Environ Res. 2022 Jun 28:113769. doi: 10.1016/j.envres.2022.113769. PMID: 35777438. n = 425.736 ↥
Mortamais, Pujol, Martínez-Vilavella, Fenoll, Reynes, Sabatier, Rivas, Forns, Vilor-Tejedor, Alemany, Cirach, Alvarez-Pedrerol, Nieuwenhuijsen, Sunyer (2019): Effects of prenatal exposure to particulate matter air pollution on corpus callosum and behavioral problems in children. Environ Res. 2019 Nov;178:108734. doi: 10.1016/j.envres.2019.108734. ↥
Carll, Salatini, Pirela, Wang, Xie, Lorkiewicz, Naeem, Qian, Castranova, Godleski, Demokritou (2020): Inhalation of printer-emitted particles impairs cardiac conduction, hemodynamics, and autonomic regulation and induces arrhythmia and electrical remodeling in rats. Part Fibre Toxicol. 2020 Jan 29;17(1):7. doi: 10.1186/s12989-019-0335-z. PMID: 31996220; PMCID: PMC6990551. ↥
Weitekamp, Hofmann (2021): Effects of air pollution exposure on social behavior: a synthesis and call for research. Environ Health. 2021 Jun 25;20(1):72. doi: 10.1186/s12940-021-00761-8. PMID: 34187479; PMCID: PMC8243425. REVIEW ↥ ↥ ↥ ↥
Emam, Shahsavani, Khodagholi, Zarandi, Hopke, Hadei, Behbahani, Yarahmadi (2020): Effects of PM2.5 and gases exposure during prenatal and early-life on autism-like phenotypes in male rat offspring. Part Fibre Toxicol. 2020 Jan 29;17(1):8. doi: 10.1186/s12989-020-0336-y. PMID: 31996222; PMCID: PMC6990481. ↥
Win-Shwe, Fujitani, Kyi-Tha-Thu, Furuyama, Michikawa, Tsukahara, Nitta, Hirano (2014): Effects of diesel engine exhaust origin secondary organic aerosols on novel object recognition ability and maternal behavior in BALB/c mice. Int J Environ Res Public Health. 2014 Oct 30;11(11):11286-307. doi: 10.3390/ijerph111111286. PMID: 25361045; PMCID: PMC4245613. ↥
Patisaul (2017): Endocrine Disruption of Vasopressin Systems and Related Behaviors. Front Endocrinol (Lausanne). 2017 Jun 19;8:134. doi: 10.3389/fendo.2017.00134. PMID: 28674520; PMCID: PMC5475378. ↥
Kopatz V, Wen K, Kovács T, Keimowitz AS, Pichler V, Widder J, Vethaak AD, Hollóczki O, Kenner L (2023): Micro- and Nanoplastics Breach the Blood-Brain Barrier (BBB): Biomolecular Corona’s Role Revealed. Nanomaterials (Basel). 2023 Apr 19;13(8):1404. doi: 10.3390/nano13081404. PMID: 37110989; PMCID: PMC10141840. ↥
Deutscher Wetterdienst; Größenverteilung luftgetragener Partikel und ihre Entstehungsprozessenach Whitby und Cantrell, 1976 german ↥
Fuertes E, Standl M, Forns J, Berdel D, Garcia-Aymerich J, Markevych I, Schulte-Koerne G, Sugiri D, Schikowski T, Tiesler CM, Heinrich J (2016): Traffic-related air pollution and hyperactivity/inattention, dyslexia and dyscalculia in adolescents of the German GINIplus and LISAplus birth cohorts. Environ Int. 2016 Dec;97:85-92. doi: 10.1016/j.envint.2016.10.017. PMID: 27835751. METASTUDIE ↥ ↥
Liu B, Fang X, Strodl E, He G, Ruan Z, Wang X, Liu L, Chen W (2022): Fetal Exposure to Air Pollution in Late Pregnancy Significantly Increases ADHD-Risk Behavior in Early Childhood. Int J Environ Res Public Health. 2022 Aug 23;19(17):10482. doi: 10.3390/ijerph191710482. PMID: 36078201; PMCID: PMC9518584. n = 26.052 ↥ ↥ ↥ ↥
Yorifuji T, Kashima S, Diez MH, Kado Y, Sanada S, Doi H (2017): Prenatal exposure to outdoor air pollution and child behavioral problems at school age in Japan. Environ Int. 2017 Feb;99:192-198. doi: 10.1016/j.envint.2016.11.016. PMID: 27890345. ↥ ↥ ↥ ↥ ↥ ↥
McGuinn LA, Bellinger DC, Colicino E, Coull BA, Just AC, Kloog I, Osorio-Valencia E, Schnaas L, Wright RJ, Téllez-Rojo MM, Wright RO, Horton MK (2020): Prenatal PM2.5 exposure and behavioral development in children from Mexico City. Neurotoxicology. 2020 Dec;81:109-115. doi: 10.1016/j.neuro.2020.09.036. Epub 2020 Sep 17. PMID: 32950567; PMCID: PMC7708408. ↥
Gong T, Almqvist C, Bölte S, Lichtenstein P, Anckarsäter H, Lind T, Lundholm C, Pershagen G (2014): Exposure to air pollution from traffic and neurodevelopmental disorders in Swedish twins. Twin Res Hum Genet. 2014 Dec;17(6):553-62. doi: 10.1017/thg.2014.58. PMID: 25229653. ↥ ↥
Forns J, Sunyer J, Garcia-Esteban R, Porta D, Ghassabian A, Giorgis-Allemand L, Gong T, Gehring U, Sørensen M, Standl M, Sugiri D, Almqvist C, Andiarena A, Badaloní C, Beelen R, Berdel D, Cesaroni G, Charles MA, Eriksen KT, Estarlich M, Fernandez MF, Forhan A, Jaddoe VWV, Korek M, Lichtenstein P, Lertxundi A, Lopez-Espinosa MJ, Markevych I, de Nazelle A, Raaschou-Nielsen O, Nieuwenhuijsen M, Pérez-Lobato R, Philippat C, Slama R, Tiesler CMT, Verhulst FC, von Berg A, Vrijkotte T, Nybo Andersen AM, Heude B, Krämer U, Heinrich J, Tiemeier H, Forastiere F, Pershagen G, Brunekreef B, Guxens M (2018): Air Pollution Exposure During Pregnancy and Symptoms of Attention Deficit and Hyperactivity Disorder in Children in Europe. Epidemiology. 2018 Sep;29(5):618-626. doi: 10.1097/EDE.0000000000000874. PMID: 29923866. METASTUDIE ↥ ↥
Shih P, Huang CC, Pan SC, Chiang TL, Guo YL (2020): Hyperactivity disorder in children related to traffic-based air pollution during pregnancy. Environ Res. 2020 Sep;188:109588. doi: 10.1016/j.envres.2020.109588. PMID: 32504847. ↥ ↥ ↥
Tartaglione AM, Camoni L, Calamandrei G, Chiarotti F, Venerosi A (2024): The contribution of environmental pollutants to the risk of autism and other neurodevelopmental disorders: A systematic review of case-control studies. Neurosci Biobehav Rev. 2024 Sep;164:105815. doi: 10.1016/j.neubiorev.2024.105815. PMID: 39053787. METASTUDY ↥
Chen G, Jin Z, Li S, Jin X, Tong S, Liu S, Yang Y, Huang H, Guo Y (2018): Early life exposure to particulate matter air pollution (PM1, PM2.5 and PM10) and autism in Shanghai, China: A case-control study. Environ Int. 2018 Dec;121(Pt 2):1121-1127. doi: 10.1016/j.envint.2018.10.026. PMID: 30409451. ↥
Sentís A, Sunyer J, Dalmau-Bueno A, Andiarena A, Ballester F, Cirach M, Estarlich M, Fernández-Somoano A, Ibarluzea J, Íñiguez C, Lertxundi A, Tardón A, Nieuwenhuijsen M, Vrijheid M, Guxens M; INMA Project (2017). Prenatal and postnatal exposure to NO2 and child attentional function at 4-5years of age. Environ Int. 2017 Sep;106:170-177. doi: 10.1016/j.envint.2017.05.021. PMID: 28689118. ↥
Oudin, Frondelius, Haglund, Källén, Forsberg, Gustafsson, Malmqvist (2019): Prenatal exposure to air pollution as a potential risk factor for autism and ADHD. Environ Int. 2019 Oct 16;133(Pt A):105149. doi: 10.1016/j.envint.2019.105149. ↥
Umweltbundesamt, abgerufen 30.11.23 ↥
Chishti, Fisher, Seegal (1996): Aroclors 1254 and 1260 reduce dopamine concentrations in rat striatal slices. Neurotoxicology. 1996 Fall-Winter;17(3-4):653-60. ↥
Jones, Miller (2008): The effects of environmental neurotoxicants on the dopaminergic system: A possible role in drug addiction. Biochem Pharmacol. 2008 Sep 1;76(5):569-81. doi: 10.1016/j.bcp.2008.05.010. PMID: 18555207. REVIEW ↥ ↥
Grønnestad, Schlenk, Krøkje, Jaspers, Jenssen, Coffin, Bertotto, Giroux, Lyche, Arukwe (2021): Alteration of neuro-dopamine and steroid hormone homeostasis in wild Bank voles in relation to tissue concentrations of PFAS at a Nordic skiing area. Sci Total Environ. 2021 Feb 20;756:143745. doi: 10.1016/j.scitotenv.2020.143745. PMID: 33250251. ↥
Sammi, Foguth, Nieves, De Perre, Wipf, McMurray, Lee, Cannon (2019): Perfluorooctane Sulfonate (PFOS) Produces Dopaminergic Neuropathology in Caenorhabditis elegans. Toxicol Sci. 2019 Dec 1;172(2):417-434. doi: 10.1093/toxsci/kfz191. PMID: 31428778; PMCID: PMC6876260.) ↥
Foguth, Hoskins, Clark, Nelson, Flynn, de Perre, Hoverman, Lee, Sepúlveda, Cannon (2020): Single and mixture per- and polyfluoroalkyl substances accumulate in developing Northern leopard frog brains and produce complex neurotransmission alterations. Neurotoxicol Teratol. 2020 Sep-Oct;81:106907. doi: 10.1016/j.ntt.2020.106907. PMID: 32561179. ↥
Hmila I, Hill J, Shalaby KE, Ouararhni K, Abedsselem H, Modaresi SMS, Bihaqi SW, Marques E, Sondhi A, Slitt AL, Zawia NH (2024): Perinatal exposure to PFOS and sustained high-fat diet promote neurodevelopmental disorders via genomic reprogramming of pathways associated with neuromotor development. Ecotoxicol Environ Saf. 2024 Mar 1;272:116070. doi: 10.1016/j.ecoenv.2024.116070. PMID: 38340603. ↥ ↥
Symeonides C, Aromataris E, Mulders Y, Dizon J, Stern C, Barker TH, Whitehorn A, Pollock D, Marin T, Dunlop S (2024): An Umbrella Review of Meta-Analyses Evaluating Associations between Human Health and Exposure to Major Classes of Plastic-Associated Chemicals. Ann Glob Health. 2024 Aug 19;90(1):52. doi: 10.5334/aogh.4459. PMID: 39183960; PMCID: PMC11342836. ↥
Kim, Jang, Lim, Kim, Shin, Lee, Kim, Hong (2020): The Effect of Prenatal Cadmium Exposure on Attention-deficit/Hyperactivity Disorder in 6-Year-old Children in Korea. J Prev Med Public Health. 2020 Jan;53(1):29-36. doi: 10.3961/jpmph.19.175. PMID: 32023672; PMCID: PMC7002990. ↥
Ibiwoye MO, Snyder EA, Lyons J, Vasauskas AA, Hernandez MJ, Summerlin AR, Foster JD (2022): The Effect of Short-Term Exposure to Cadmium on the Expression of Vascular Endothelial Barrier Antigen in the Developing Rat Forebrain and Cerebellum: A Computerized Quantitative Immunofluorescent Study. Cureus. 2022 Apr 5;14(4):e23848. doi: 10.7759/cureus.23848. PMID: 35402117; PMCID: PMC8986507. ↥
Peters, Frühgeborene und Schule – Ermutigt oder ausgebremst? Kapitel 2: Das Aufmerksamkeitsdefizitsyndrom (AD(H)S), Seite 126 ↥
http://www.adhs.org/genese/ mit weiteren Nachweisen ↥ ↥
van de Bor (2019): Fetal toxicology. Handb Clin Neurol. 2019;162:31-55. doi: 10.1016/B978-0-444-64029-1.00002-3. ↥
RÍsovÁ (2020): The pathway of lead through the mother’s body to the child. Interdiscip Toxicol. 2019 Sep;12(1):1-6. doi: 10.2478/intox-2019-0001. PMID: 32189981; PMCID: PMC7061448. REVIEW ↥
Cory-Slechta, Virgolini, Thiruchelvam, Weston, Bauter (2004): Maternal stress modulates the effects of developmental lead exposure. Environ Health Perspect. 2004 May;112(6):717-30. ↥
Cory-Slechta, Stern, Weston, Allen, Liu (2010): Enhanced learning deficits in female rats following lifetime pb exposure combined with prenatal stress. Toxicol Sci. 2010 Oct;117(2):427-38. doi: 10.1093/toxsci/kfq221. ↥
Virgolini, Rossi-George, Lisek, Weston, Thiruchelvam, Cory-Slechta (2008): CNS effects of developmental Pb exposure are enhanced by combined maternal and offspring stress. Neurotoxicology. 2008 Sep;29(5):812-27. doi: 10.1016/j.neuro.2008.03.003. ↥
Weston, Weston, Allen, Cory-Slechta (2014): Sex-dependent impacts of low-level lead exposure and prenatal stress on impulsive choice behavior and associated biochemical and neurochemical manifestations. Neurotoxicology. 2014 Sep;44:169-83. doi: 10.1016/j.neuro.2014.06.013. ↥
Austin, Curtin, Curtin, Gennings, Arora, Tammimies, Isaksson, Willfors, Bölte (2019): Dynamical properties of elemental metabolism distinguish attention deficit hyperactivity disorder from autism spectrum disorder. Transl Psychiatry. 2019 Sep 25;9(1):238. doi: 10.1038/s41398-019-0567-6. ↥
Markovac, Goldstein (1988): Picomolar concentrations of lead stimulate brain protein kinase C. Nature volume 334, pages 71–3, 1988 ↥
Arnsten (2009): Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009 Jun;10(6):410-22. doi: 10.1038/nrn2648. ↥
Gedeon, Ramesh, Wellman, Jadhav (2001): Changes in mesocorticolimbic dopamine and D1/D2 receptor levels after low level lead exposure: a time course study, Toxicology Letters, Volume 123, Issues 2–3, 2001, Pages 217-226, ISSN 0378-4274, https://doi.org/10.1016/S0378-4274(01)00408-8 ↥ ↥
Morgan, Garavan, Smith, Driscoll, Levitsky, Strupp (2001): Early lead exposure produces lasting changes in sustained attention, response initiation, and reactivity to errors, Neurotoxicology and Teratology, Volume 23, Issue 6, 2001, Pages 519-531, ISSN 0892-0362, https://doi.org/10.1016/S0892-0362(01)00171-4. ↥ ↥
Lidsky, Schneider (2003): Lead neurotoxicity in children: basic mechanisms and clinical correlates, Brain, Volume 126, Issue 1, January 2003, Pages 5–19, https://doi.org/10.1093/brain/awg014 ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥ ↥
Cecil, Brubaker, Adler, Dietrich, Altaye, Egelhoff, Wessel, Elangovan, Hornung, Jarvis, Lanphear (2008) Decreased Brain Volume in Adults with Childhood Lead Exposure. PLoS Med 5(5): e112. https://doi.org/10.1371/journal.pmed.0050112. ↥
Nevin (2000): How Lead Exposure Relates to Temporal Changes in IQ, Violent Crime, and Unwed Pregnancy, Environmental Research, Volume 83, Issue 1, 2000, Pages 1-22, ISSN 0013-9351, https://doi.org/10.1006/enrs.1999.4045. ↥ ↥ ↥ ↥
Wright, Dietrich, Ris, Hornung, Wessel, Lanphear, Ho, Rae (2008): Association of Prenatal and Childhood Blood Lead Concentrations with Criminal Arrests in Early Adulthood. PLoS Med 5(5): e101. https://doi.org/10.1371/journal.pmed.0050101 ↥ ↥ ↥ ↥
Xi, Wu (2021): A Review on the Mechanism Between Different Factors and the Occurrence of Autism and ADHD. Psychol Res Behav Manag. 2021 Apr 9;14:393-403. doi: 10.2147/PRBM.S304450. PMID: 33859505; PMCID: PMC8044340. REVIEW ↥
Tong, Liang, Huang, Xiang, Qi, Feng, Lai, Shao, Wu, Tao (2020): Prenatal serum thallium exposure and 36-month-old children’s attention-deficit/hyperactivity disorder symptoms: Ma’anshan birth cohort study. Chemosphere. 2020 Apr;244:125499. doi: 10.1016/j.chemosphere.2019.125499. PMID: 32050328. ↥
Dingess, Thakar, Zhang, Flynn, Brown (2018): High-Salt Exposure During Perinatal Development Enhances Stress Sensitivity. Dev Neurobiol. 2018 Nov;78(11):1131-1145. doi: 10.1002/dneu.22635. ↥
Vester, Caudle (2016): The Synapse as a Central Target for Neurodevelopmental Susceptibility to Pesticides. Toxics. 2016 Aug 26;4(3):18. doi: 10.3390/toxics4030018. PMID: 29051423; PMCID: PMC5606656. REVIEW ↥ ↥
Slotkin, Seidler (2007): Comparative developmental neurotoxicity of organophosphates in vivo: transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems. Brain Res Bull. 2007 May 30;72(4-6):232-74. doi: 10.1016/j.brainresbull.2007.01.005. PMID: 17452286; PMCID: PMC1945108. ↥
Rauh, Arunajadai, Horton, Perera, Hoepner, Barr, Whyatt (2011): Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect. 2011 Aug;119(8):1196-201. doi: 10.1289/ehp.1003160. PMID: 21507777; PMCID: PMC3237355. ↥
Bouchard, Chevrier, Harley, Kogut, Vedar, Calderon, Trujillo, Johnson, Bradman, Barr, Eskenazi (2011): Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect. 2011 Aug;119(8):1189-95. doi: 10.1289/ehp.1003185. PMID: 21507776; PMCID: PMC3237357. ↥
Thistle, Ramos, Roell, Choi, Manley, Hall, Villanger, Cequier, Sakhi, Thomsen, Zeiner, Reichborn-Kjennerud, Øvergaard, Herring, Aase, Engel (2022): Prenatal organophosphorus pesticide exposure and executive function in preschool-aged children in the Norwegian Mother, Father and Child Cohort Study (MoBa). Environ Res. 2022 May 22:113555. doi: 10.1016/j.envres.2022.113555. PMID: 35613628.) ↥
Ho, Hoskins (1990): Dopamine in organophosphate-induced neurotoxicity. J Toxicol Sci . 1990 Dec;15 Suppl 4:159-61. doi: 10.2131/jts.15.supplementiv_159. REVIEW ↥
Manley, Villanger, Thomsen, Cequier, Sakhi, Reichborn-Kjennerud, Herring, Øvergaard, Zeiner, Roell, Engel, Kamai, Thistle, Hall, Aase, Engel (2022): Prenatal Exposure to Organophosphorus Pesticides and Preschool ADHD in the Norwegian Mother, Father and Child Cohort Study. Int J Environ Res Public Health. 2022 Jul 2;19(13):8148. doi: 10.3390/ijerph19138148. PMID: 35805806. ↥
Hall AM, Ramos AM, Drover SS, Choi G, Keil AP, Richardson DB, Martin CL, Olshan AF, Villanger GD, Reichborn-Kjennerud T, Zeiner P, Øvergaard KR, Sakhi AK, Thomsen C, Aase H, Engel SM (2022): Gestational organophosphate ester exposure and preschool attention-deficit/hyperactivity disorder in the Norwegian Mother, Father, and Child cohort study. Int J Hyg Environ Health. 2022 Nov 28;248:114078. doi: 10.1016/j.ijheh.2022.114078. PMID: 36455478. ↥
Zhou W, Deng Y, Zhang C, Dai H, Guan L, Luo X, He W, Tian J, Zhao L (2022): Chlorpyrifos residue level and ADHD among children aged 1-6 years in rural China: A cross-sectional study. Front Pediatr. 2022 Oct 14;10:952559. doi: 10.3389/fped.2022.952559. PMID: 36313880; PMCID: PMC9616114. ↥
Li H, Tong J, Wang X, Lu M, Yang F, Gao H, Gan H, Yan S, Gao G, Huang K, Cao Y, Tao F (2024): Associations of prenatal exposure to individual and mixed organophosphate esters with ADHD symptom trajectories in preschool children: The modifying effects of maternal Vitamin D. J Hazard Mater. 2024 Oct 5;478:135541. doi: 10.1016/j.jhazmat.2024.135541. PMID: 39154480. ↥
Hall AM, Thistle JE, Manley CK, Roell KR, Ramos AM, Villanger GD, Reichborn-Kjennerud T, Zeiner P, Cequier E, Sakhi AK, Thomsen C, Aase H, Engel SM (2022): Organophosphorus Pesticide Exposure at 17 Weeks’ Gestation and Odds of Offspring Attention-Deficit/Hyperactivity Disorder Diagnosis in the Norwegian Mother, Father, and Child Cohort Study. Int J Environ Res Public Health. 2022 Dec 15;19(24):16851. doi: 10.3390/ijerph192416851. PMID: 36554732; PMCID: PMC9778918. n = 849 ↥
Dalsager, Fage-Larsen, Bilenberg, Jensen, Nielsen, Kyhl, Grandjean, Andersen (2019): Maternal urinary concentrations of pyrethroid and chlorpyrifos metabolites and attention deficit hyperactivity disorder (ADHD) symptoms in 2-4-year-old children from the Odense Child Cohort. Environ Res. 2019 Sep;176:108533. doi: 10.1016/j.envres.2019.108533. ↥ ↥ ↥
Pitzer, Williams, Vorhees (2021) Effects of pyrethroids on brain development and behavior: Deltamethrin. Neurotoxicol Teratol. 2021 Apr 20;87:106983. doi: 10.1016/j.ntt.2021.106983. PMID: 33848594. REVIEW ↥ ↥
Xi, Yang, Yu, Li, He, El-Aziz, Zhao, Cao (2022): Influence of perinatal deltamethrin exposure at distinct developmental stages on motor activity, learning and memory. Ecotoxicol Environ Saf. 2022 Apr 1;236:113460. doi: 10.1016/j.ecoenv.2022.113460. PMID: 35378399. ↥
Buchenauer L, Haange SB, Bauer M, Rolle-Kampczyk UE, Wagner M, Stucke J, Elter E, Fink B, Vass M, von Bergen M, Schulz A, Zenclussen AC, Junge KM, Stangl GI, Polte T (2023): Maternal exposure of mice to glyphosate induces depression- and anxiety-like behavior in the offspring via alterations of the gut-brain axis. Sci Total Environ. 2023 Sep 12;905:167034. doi: 10.1016/j.scitotenv.2023.167034. PMID: 37709081. ↥
Shaw W (2024): Hypothesis: 2 Major Environmental and Pharmaceutical Factors-Acetaminophen Exposure and Gastrointestinal Overgrowth of Clostridia Bacteria Induced By Ingestion of Glyphosate-Contaminated Foods-Dysregulate the Developmental Protein Sonic Hedgehog and Are Major Causes of Autism. Integr Med (Encinitas). 2024 Jul;23(3):12-23. PMID: 39114279; PMCID: PMC11302971. ↥ ↥
Costa HE, Cairrao E (2024): Effect of bisphenol A on the neurological system: a review update. Arch Toxicol. 2024 Jan;98(1):1-73. doi: 10.1007/s00204-023-03614-0. PMID: 37855918; PMCID: PMC10761478. REVIEW ↥ ↥ ↥ ↥
Balakrishnan B, Henare K, Thorstensen EB, Ponnampalam AP, Mitchell MD (2010): Transfer of bisphenol A across the human placenta. Am J Obstet Gynecol. 2010 Apr;202(4):393.e1-7. doi: 10.1016/j.ajog.2010.01.025. PMID: 20350650. ↥
Corbel T, Gayrard V, Puel S, Lacroix MZ, Berrebi A, Gil S, Viguié C, Toutain PL, Picard-Hagen N (2014): Bidirectional placental transfer of Bisphenol A and its main metabolite, Bisphenol A-Glucuronide, in the isolated perfused human placenta. Reprod Toxicol. 2014 Aug;47:51-8. doi: 10.1016/j.reprotox.2014.06.001. PMID: 24933518. ↥
Grandin FC, Lacroix MZ, Gayrard V, Viguié C, Mila H, de Place A, Vayssière C, Morin M, Corbett J, Gayrard C, Gely CA, Toutain PL, Picard-Hagen N (2019): Is bisphenol S a safer alternative to bisphenol A in terms of potential fetal exposure? Placental transfer across the perfused human placenta. Chemosphere. 2019 Apr;221:471-478. doi: 10.1016/j.chemosphere.2019.01.065. PMID: 30654261. ↥
Ye X, Kuklenyik Z, Needham LL, Calafat AM (2006): Measuring environmental phenols and chlorinated organic chemicals in breast milk using automated on-line column-switching-high performance liquid chromatography-isotope dilution tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2006 Feb 2;831(1-2):110-5. doi: 10.1016/j.jchromb.2005.11.050. PMID: 16377264. ↥
Ni Y, Hu L, Yang S, Ni L, Ma L, Zhao Y, Zheng A, Jin Y, Fu Z (2021): Bisphenol A impairs cognitive function and 5-HT metabolism in adult male mice by modulating the microbiota-gut-brain axis. Chemosphere. 2021 Nov;282:130952. doi: 10.1016/j.chemosphere.2021.130952. PMID: 34082316. ↥
Feng D, Zhang H, Jiang X, Zou J, Li Q, Mai H, Su D, Ling W, Feng X (2020): Bisphenol A exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice. Environ Pollut. 2020 Oct;265(Pt A):114880. doi: 10.1016/j.envpol.2020.114880. PMID: 32540565. ↥
Lai KP, Chung YT, Li R, Wan HT, Wong CK (2016): Bisphenol A alters gut microbiome: Comparative metagenomics analysis. Environ Pollut. 2016 Nov;218:923-930. doi: 10.1016/j.envpol.2016.08.039. PMID: 27554980. ↥
Engdahl E, van Schijndel MDM, Voulgaris D, Di Criscio M, Ramsbottom KA, Rigden DJ, Herland A, Rüegg J (2021): Bisphenol A Inhibits the Transporter Function of the Blood-Brain Barrier by Directly Interacting with the ABC Transporter Breast Cancer Resistance Protein (BCRP). Int J Mol Sci. 2021 May 24;22(11):5534. doi: 10.3390/ijms22115534. PMID: 34073890; PMCID: PMC8197233. ↥
Panagiotidou, Zerva, Mitsiou, Alexis, Kitraki (2014): Perinatal exposure to low-dose bisphenol A affects the neuroendocrine stress response in rats. J Endocrinol. 2014 Jan 27;220(3):207-18. doi: 10.1530/JOE-13-0416. ↥
Minatoya, Kishi (2021): A Review of Recent Studies on Bisphenol A and Phthalate Exposures and Child Neurodevelopment. Int J Environ Res Public Health. 2021 Mar 30;18(7):3585. doi: 10.3390/ijerph18073585. PMID: 33808331. REVIEW ↥ ↥
Mao, Jain, Denslow, Nouri, Chen, Wang, Zhu, Koh, Sarma, Sumner, Lei, Sumner, Bivens, Roberts, Tuteja, Rosenfeld (2020): Bisphenol A and bisphenol S disruptions of the mouse placenta and potential effects on the placenta-brain axis. Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4642-4652. doi: 10.1073/pnas.1919563117. Epub 2020 Feb 18. PMID: 32071231; PMCID: PMC7060676. ↥
Barrett (2019): Attention Worthy: Prenatal Phthalate Exposure and Subsequent ADHD Diagnosis Science Selection; CID: 034001https://doi.org/10.1289/EHP3815 ↥
Almeida-Toledano L, Navarro-Tapia E, Sebastiani G, Ferrero-Martínez S, Ferrer-Aguilar P, García-Algar Ó, Andreu-Fernández V, Gómez-Roig MD (2024): Effect of prenatal phthalate exposure on fetal development and maternal/neonatal health consequences: A systematic review. Sci Total Environ. 2024 Nov 10;950:175080. doi: 10.1016/j.scitotenv.2024.175080. PMID: 39079634. REVIEW ↥
Radke, Braun, Nachman, Cooper (2020): Phthalate exposure and neurodevelopment: A systematic review and meta-analysis of human epidemiological evidence. Environ Int. 2020 Feb 8;137:105408. doi: 10.1016/j.envint.2019.105408. PMID: 32045779. REVIEW ↥
Salazar, Villaseca, Cisternas, Inestrosa (2021). Neurodevelopmental impact of the offspring by thyroid hormone system-disrupting environmental chemicals during pregnancy. Environ Res. 2021 Jun 1;200:111345. doi: 10.1016/j.envres.2021.111345. PMID: 34087190. ↥
Ku, Tsai, Wang, Su, Sun, Wang, Wang (2019): Prenatal and childhood phthalate exposure and attention deficit hyperactivity disorder traits in child temperament: A 12-year follow-up birth cohort study. Sci Total Environ. 2019 Aug 29;699:134053. doi: 10.1016/j.scitotenv.2019.134053. ↥
Ko MY, Park H, Chon SH, Lee BS, Cha SW, Hyun SA, Ka M (2023): Prenatal Di-methoxyethyl phthalate exposure impairs cortical neurogenesis and synaptic activity in the mice. Brain Pathol. 2023 Oct 30:e13221. doi: 10.1111/bpa.13221. PMID: 37903655. ↥
Skogheim, Villanger, Weyde, Engel, Surén, Øie, Skogan, Biele, Zeiner, Øvergaard, Haug, Sabaredzovic, Aase (2019): Prenatal exposure to perfluoroalkyl substances and associations with symptoms of attention-deficit/hyperactivity disorder and cognitive functions in preschool children. Int J Hyg Environ Health. 2019 Oct 22. pii: S1438-4639(19)30570-X. doi: 10.1016/j.ijheh.2019.10.003. ↥
Qu, Cao, Li, Wang, Liu, Wang, Nie, Sun, Liu, Zhang (2021): The association between maternal perfluoroalkyl substances exposure and early attention deficit hyperactivity disorder in children: a systematic review and meta-analysis. Environ Sci Pollut Res Int. 2021 Jul 9. doi: 10.1007/s11356-021-15136-2. PMID: 34244930. ↥
Yao H, Fu Y, Weng X, Zeng Z, Tan Y, Wu X, Zeng H, Yang Z, Li Y, Liang H, Wu Y, Wen L, Jing C (2023): The Association between Prenatal Per- and Polyfluoroalkyl Substances Exposure and Neurobehavioral Problems in Offspring: A Meta-Analysis. Int J Environ Res Public Health. 2023 Jan 17;20(3):1668. doi: 10.3390/ijerph20031668. PMID: 36767045. REVIEW ↥
Kim JI, Kim BN, Lee YA, Shin CH, Hong YC, Døssing LD, Hildebrandt G, Lim YH (2023): Association between early-childhood exposure to perfluoroalkyl substances and ADHD symptoms: A prospective cohort study. Sci Total Environ. 2023 Mar 25:163081. doi: 10.1016/j.scitotenv.2023.163081. PMID: 36972880. ↥
Pham-The T, Nishijo M, Pham TN, Vu HT, Tran NN, Tran AH, Hoang LV, Do Q, Nishino Y, Nishijo H. (2022): Perinatal Dioxin Exposure and Attention Deficit Hyperactivity Disorder (ADHD) Symptoms in Children Living in a Dioxin Contamination Hotspot in Vietnam. Toxics. 2022 Apr 24;10(5):212. doi: 10.3390/toxics10050212. PMID: 35622626; PMCID: PMC9143824. ↥
Choi YJ, Cho J, Hong YC, Lee DW, Moon S, Park SJ, Lee KS, Shin CH, Lee YA, Kim BN, Kaminsky Z, Kim JI, Lim YH (2023): DNA methylation is associated with prenatal exposure to sulfur dioxide and childhood attention-deficit hyperactivity disorder symptoms. Sci Rep. 2023 Mar 1;13(1):3501. doi: 10.1038/s41598-023-29843-y. PMID: 36859453; PMCID: PMC9977725. n = 329 ↥
Yorifuji T, Kashima S, Higa Diez M, Kado Y, Sanada S, Doi H (2016)_ Prenatal Exposure to Traffic-related Air Pollution and Child Behavioral Development Milestone Delays in Japan. Epidemiology. 2016 Jan;27(1):57-65. doi: 10.1097/EDE.0000000000000361. PMID: 26247490. ↥
Park S, Cowell W, Margolis AE, Sjodin A, Jones R, Rauh V, Wang S, Herbstman JB (2023): Prenatal exposure to polybrominated diphenyl ethers and inattention/hyperactivity symptoms in mid to late adolescents. Front Epidemiol. 2023 Jun 21;3:1061234. doi: 10.3389/fepid.2023.1061234. PMID: 38455925; PMCID: PMC10910905. ↥
Ibarluzea J, Subiza-Pérez M, Arregi A, Molinuevo A, Arranz-Freijo E, Sánchez-de Miguel M, Jiménez A, Andiarena A, Santa-Marina L, Lertxundi A. Association of maternal prenatal urinary fluoride levels with ADHD symptoms in childhood. Environ Res. 2023 Jul 19;235:116705. doi: 10.1016/j.envres.2023.116705. PMID: 37479215. ↥
Wang A, Duan L, Huang H, Ma J, Zhang Y, Ma Q, Guo Y, Li Z, Cheng X, Zhu J, Zhou G, Ba Y (2022): Association between fluoride exposure and behavioural outcomes of school-age children: a pilot study in China. Int J Environ Health Res. 2022 Jan;32(1):232-241. doi: 10.1080/09603123.2020.1747601. PMID: 32281876. ↥
Riddell JK, Malin AJ, Flora D, McCague H, Till C (2019): Association of water fluoride and urinary fluoride concentrations with attention deficit hyperactivity disorder in Canadian youth. Environ Int. 2019 Dec;133(Pt B):105190. doi: 10.1016/j.envint.2019.105190. Erratum in: Environ Int. 2022 Mar;161:107091. PMID: 31654913; PMCID: PMC8118663. ↥
Shih, Zeng, Lin, Chen, Chen, Wu, Tseng, Wu (2018): Association between peripheral manganese levels and attention-deficit/hyperactivity disorder: a preliminary meta-analysis. Neuropsychiatr Dis Treat. 2018 Jul 18;14:1831-1842. doi: 10.2147/NDT.S165378. eCollection 2018. ↥
Schildroth S, Bauer JA, Friedman A, Austin C, Coull BA, Placidi D, White RF, Smith D, Wright RO, Lucchini RG, Arora M, Horton M, Claus Henn B (2023): Early life manganese exposure and reported attention-related behaviors in Italian adolescents. Environ Epidemiol. 2023 Oct 19;7(6):e274. doi: 10.1097/EE9.0000000000000274. PMID: 38912396; PMCID: PMC11189689. ↥
Smith DR, Strupp BJ. Animal Models of Childhood Exposure to Lead or Manganese: Evidence for Impaired Attention, Impulse Control, and Affect Regulation and Assessment of Potential Therapies. Neurotherapeutics. 2023 Feb 28. doi: 10.1007/s13311-023-01345-9. PMID: 36853434. ↥
Bernal J. Action of thyroid hormone in brain. J Endocrinol Invest. 2002 Mar;25(3):268-88. doi: 10.1007/BF03344003. PMID: 11936472. REVIEW ↥
Thompson CC, Potter GB (2000): Thyroid hormone action in neural development. Cereb Cortex. 2000 Oct;10(10):939-45. doi: 10.1093/cercor/10.10.939. PMID: 11007544. REVIEW ↥
König S, Moura Neto V (2002): Thyroid hormone actions on neural cells. Cell Mol Neurobiol. 2002 Dec;22(5-6):517-44. doi: 10.1023/a:1021828218454. PMID: 12585678. REVIEW ↥
Evans IM, Sinha AK, Pickard MR, Edwards PR, Leonard AJ, Ekins RP (1999): Maternal hypothyroxinemia disrupts neurotransmitter metabolic enzymes in developing brain. J Endocrinol. 1999 May;161(2):273-9. doi: 10.1677/joe.0.1610273. PMID: 10320825. ↥
Klein RZ, Sargent JD, Larsen PR, Waisbren SE, Haddow JE, Mitchell ML. Relation of severity of maternal hypothyroidism to cognitive development of offspring. J Med Screen. 2001;8(1):18-20. doi: 10.1136/jms.8.1.18. PMID: 11373843. ↥
Downing S, Halpern L, Carswell J, Brown RS (2012): Severe maternal hypothyroidism corrected prior to the third trimester is associated with normal cognitive outcome in the offspring. Thyroid. 2012 Jun;22(6):625-30. doi: 10.1089/thy.2011.0257. PMID: 22574629. ↥
Idris I, Srinivasan R, Simm A, Page RC (2006): Maternal hypothyroidism in early and late gestation: effects on neonatal and obstetric outcome. Clin Endocrinol (Oxf). 2005 Nov;63(5):560-5. doi: 10.1111/j.1365-2265.2005.02382.x. PMID: 16268809. ↥
Siesser WB, Zhao J, Miller LR, Cheng SY, McDonald MP (2006): Transgenic mice expressing a human mutant beta1 thyroid receptor are hyperactive, impulsive, and inattentive. Genes Brain Behav. 2006 Apr;5(3):282-97. doi: 10.1111/j.1601-183X.2005.00161.x. Erratum in: Genes Brain Behav. 2006 Apr;5(3):298. PMID: 16594981. ↥
Modesto, Tiemeier, Peeters, Jaddoe, Hofman, Verhulst, Ghassabian (2015): Maternal Mild Thyroid Hormone Insufficiency in Early Pregnancy and Attention-Deficit/Hyperactivity Disorder Symptoms in Children. JAMA Pediatr. 2015 Sep;169(9):838-45. doi: 10.1001/jamapediatrics.2015.0498. PMID: 26146876. ↥
Hales, Taylor, Channon, McEwan, Thapar, Langley, Muller, Draman, Dayan, Gregory, Okosieme, Lazarus, Rees, Ludgate (2019): Controlled Antenatal Thyroid Screening II: effect of treating maternal sub-optimal thyroid function on child behaviour. J Clin Endocrinol Metab. 2019 Oct 29. pii: dgz098. doi: 10.1210/clinem/dgz098. ↥
Demeneix (2019): Evidence for Prenatal Exposure to Thyroid Disruptors and Adverse Effects on Brain Development. Eur Thyroid J. 2019 Dec;8(6):283-292. doi: 10.1159/000504668. PMID: 31934553; PMCID: PMC6944944. ↥
Levie, Korevaar, Mulder, Bath, Dineva, Lopez-Espinosa, Basterrechea, Santa Marina, Rebagliato, Sunyer, Rayman, Tiemeier, Peeters, Guxens (2019): Maternal Thyroid Function in Early Pregnancy and Child Attention-Deficit Hyperactivity Disorder: An Individual-Participant Meta-Analysis. Thyroid. 2019 Aug 20. doi: 10.1089/thy.2018.0794. ↥
Engel SM, Villanger GD, Herring A, Nethery RC, Drover SSM, Zoeller RT, Meltzer HM, Zeiner P, Knudsen GP, Reichborn-Kjennerud T, Longnecker MP, Aase H (2022): Gestational thyroid hormone concentrations and risk of attention-deficit hyperactivity disorder in the Norwegian Mother, Father and Child Cohort Study. Paediatr Perinat Epidemiol. 2022 Dec 8. doi: 10.1111/ppe.12941. PMID: 36482860. ↥
Umezu, Kita, Morita (2019): Hyperactive behavioral phenotypes and an altered brain monoaminergic state in male offspring mice with perinatal hypothyroidism. Toxicol Rep. 2019 Oct 7;6:1031-1039. doi: 10.1016/j.toxrep.2019.10.005. eCollection 2019. ↥
Lin HY, Liang CS, Tsai SJ, Hsu JW, Huang KL, Su TP, Chen TJ, Bai YM, Hsu TW, Chen MH (2024): Congenital hypothyroidism and risk of subsequent autism spectrum disorder and attention-deficit/hyperactivity disorder in Taiwan. Psychiatry Clin Neurosci. 2024 Nov;78(11):721-725. doi: 10.1111/pcn.13733. PMID: 39254145. ↥
Villanger, Ystrom, Engel, Longnecker, Pettersen, Rowe, Reichborn-Kjennerud, Aase (2020): Neonatal thyroid-stimulating hormone and association with attention-deficit/hyperactivity disorder. Paediatr Perinat Epidemiol. 2020 Sep;34(5):590-596. doi: 10.1111/ppe.12643. PMID: 32072662; PMCID: PMC7431377. n = 1.497 ↥
Khan JY, Rajakumar RA, Devaskar UP, Weissfeld LA, Devaskar SU (1999): Effect of primary congenital hypothyroidism upon expression of genes mediating murine brain glucose uptake. Pediatr Res. 1999 May;45(5 Pt 1):718-25. doi: 10.1203/00006450-199905010-00019. PMID: 10231871. ↥
Buss, Entringer, Davis, Hobel, Swanson, Wadhwa, Sandman (2012): Impaired Executive Function Mediates the Association between Maternal Pre-Pregnancy Body Mass Index and Child ADHD Symptoms https://doi.org/10.1371/journal.pone.0037758 ↥
Sanchez CE, Barry C, Sabhlok A, Russell K, Majors A, Kollins SH, Fuemmeler BF (2018): Maternal pre-pregnancy obesity and child neurodevelopmental outcomes: a meta-analysis. Obes Rev. 2018 Apr;19(4):464-484. doi: 10.1111/obr.12643. PMID: 29164765; PMCID: PMC6059608. Meta-Analysis ↥
Duko B, Mengistu TS, Stacey D, Moran LJ, Tessema G, Pereira G, Bedaso A, Gebremedhin AT, Alati R, Ayonrinde OT, Benyamin B, Lee SH, Hyppönen E (2024): Associations between maternal preconception and pregnancy adiposity and neuropsychiatric and behavioral outcomes in the offspring: A systematic review and meta-analysis. Psychiatry Res. 2024 Dec;342:116149. doi: 10.1016/j.psychres.2024.116149. PMID: 39278191. REVIEW, n = 3.680.937 ↥
Jenabi, Bashirian, Khazaei, Basiri (2019): The maternal pre-pregnancy BMI and the risk of ADHD among children and adolescents: A systematic review and meta-Analysis. Korean J Pediatr. 2019 Jun 14. doi: 10.3345/kjp.2019.00185. REVIEW ↥
Robinson, Ghassabian, Sundaram, Trinh, Lin, Bell, Yeung (2020): Parental Weight Status and Offspring Behavioral Problems and Psychiatric Symptoms. J Pediatr. 2020 May;220:227-236.e1. doi: 10.1016/j.jpeds.2020.01.016. PMID: 32067780; PMCID: PMC7186145. ↥
Naef L, Srivastava L, Gratton A, Hendrickson H, Owens SM, Walker CD (2008): Maternal high fat diet during the perinatal period alters mesocorticolimbic dopamine in the adult rat offspring: reduction in the behavioral responses to repeated amphetamine administration. Psychopharmacology (Berl). 2008 Mar;197(1):83-94. doi: 10.1007/s00213-007-1008-4. PMID: 18004547. ↥
Hughes AM, Sanderson E, Morris T, Ayorech Z, Tesli M, Ask H, Reichborn-Kjennerud T, Andreassen OA, Magnus P, Helgeland Ø, Johansson S, Njølstad P, Davey Smith G, Havdahl A, Howe LD, Davies NM (2022): Body mass index and childhood symptoms of depression, anxiety, and attention-deficit hyperactivity disorder: A within-family Mendelian randomization study. Elife. 2022 Dec 20;11:e74320. doi: 10.7554/eLife.74320. PMID: 36537070; PMCID: PMC9767454. n = 40.949 Familien ↥
Heilbrun LP, Palmer RF, Jaen CR, Svoboda MD, Perkins J, Miller CS (2015): Maternal Chemical and Drug Intolerances: Potential Risk Factors for Autism and Attention Deficit Hyperactivity Disorder (ADHD). J Am Board Fam Med. 2015 Jul-Aug;28(4):461-70. doi: 10.3122/jabfm.2015.04.140192. PMID: 26152436. n = 694 ↥
Palmer RF, Kattari D, Rincon R, Miller CS (2024): Assessing Chemical Intolerance in Parents Predicts the Risk of Autism and ADHD in Their Children. J Xenobiot. 2024 Mar 5;14(1):350-367. doi: 10.3390/jox14010022. PMID: 38535497; PMCID: PMC10970846. n = 6.746 ↥
Getahun, Rhoads, Demissie, Lu, Quinn, Fassett, Wing. Jacobsen (2013): In utero exposure to ischemic-hypoxic conditions and attention-deficit/hyperactivity disorder. Pediatrics 131 1 (2013): e53-61. ↥
Maher, Dalman, O’Keeffe, Kearney, McCarthy, Kenny, Khashan (2020): Association between preeclampsia and attention-deficit hyperactivity disorder: a population-based and sibling-matched cohort study. Acta Psychiatr Scand. 2020 Feb 13. doi: 10.1111/acps.13162. PMID: 32056200. n = 2.047.619 ↥
Gumusoglu, Chilukuri, Santillan, Santillan, Stevens (2020): Neurodevelopmental Outcomes of Prenatal Preeclampsia Exposure. Trends Neurosci. 2020 Apr;43(4):253-268. doi: 10.1016/j.tins.2020.02.003. PMID: 32209456; PMCID: PMC7170230. REVIEW ↥
Zhao J, Xia L.(2022): Association between hypertensive disorders of pregnancy and risk of attention-deficit/hyperactivity disorder in the offspring: a systematic review and meta-analysis. Hypertens Pregnancy. 2022 May 28:1-10. doi: 10.1080/10641955.2022.2079674. PMID: 35634947. REVIEW ↥ ↥
Ramos, de Mattos Hungria, Camerini, Suiama, Calzavara (2020): Potential beneficial effects of caffeine administration in the neonatal period of an animal model of schizophrenia. Behav Brain Res. 2020 Aug 5;391:112674. doi: 10.1016/j.bbr.2020.112674. PMID: 32417274. ↥
Triche, Grosso, Belanger, Darefsky, Benowitz, Bracken (2008): Chocolate consumption in pregnancy and reduced likelihood of preeclampsia. Epidemiology. 2008 May;19(3):459-64. doi: 10.1097/EDE.0b013e31816a1d17. PMID: 18379424; PMCID: PMC2782959. ↥
Chen S, Ahlqvist VH, Sjöqvist H, Stephansson O, Magnusson C, Dalman C, Karlsson H, Lee BK, Gardner RM (2024): Maternal intrahepatic cholestasis of pregnancy and neurodevelopmental conditions in offspring: A population-based cohort study of 2 million Swedish children. PLoS Med. 2024 Jan 16;21(1):e1004331. doi: 10.1371/journal.pmed.1004331. PMID: 38227577; PMCID: PMC10790993. ↥
Borgert M, Melin A, Hollander AC, Rahman S (2024): Prenatal maternal PTSD as a risk factor for offspring ADHD: A register-based Swedish cohort study of 553 766 children and their mothers. Eur Psychiatry. 2024 Mar 1:1-19. doi: 10.1192/j.eurpsy.2024.21. PMID: 38425211. ↥
Kacharava, Nemsadze, Inasaridze (2022): PRESENCE OF PRENATAL MATERNAL STRESS INCREASES THE RISK OF THE DEVELOPMENT OF ADHD SYMPTOMS IN YOUNG CHILDREN. Georgian Med News. 2022 Mar;(324):92-101. PMID: 35417868. ↥
Manzari, Matvienko-Sikar, Baldoni, O’Keeffe, Khashan (2019): Prenatal maternal stress and risk of neurodevelopmental disorders in the offspring: a systematic review and meta-analysis. Soc Psychiatry Psychiatr Epidemiol. 2019 Jul 20. doi: 10.1007/s00127-019-01745-3. REVIEW ↥
Assaf M, Rouphael M, Bou Sader Nehme S, Soufia M, Alameddine A, Hallit S, Landry M, Bitar T, Hleihel W (2024): Correlational Insights into Attention-Deficit/Hyperactivity Disorder in Lebanon. Int J Environ Res Public Health. 2024 Aug 5;21(8):1027. doi: 10.3390/ijerph21081027. PMID: 39200638; PMCID: PMC11353674. ↥ ↥
Wurmser, Rieger, Domogalla, Kahnt, Buchwald, Kowatsch, Kuehnert, Buske-Kirschbaum, Papousek, Pirke, von Voss (2006): Assiciation between life stress durcing prengnancy and infant crying in the first six months postpartum: A prospective longitudinal study. Early Human Development 82, 341-349 ↥
Talge, Neal, Glover (2007): Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? J Child Psychol Psychiatry. 2007 Mar-Apr;48(3-4):245-61. ↥
von Lüpke: Die ADHS-Problematik hat eine lange Geschichte, Seite 4 ↥
[Bolea-Alamañac, Davies, Evans, Joinson, Pearson, Skapinakis, Emond (2019): Does maternal somatic anxiety in pregnancy predispose children to hyperactivity? Eur Child Adolesc Psychiatry. 2019 Mar 13. doi: 10.1007/s00787-019-01289-6.](https://www.ncbi.nlm.nih.gov/pubmed/30868247 ↥
Lautarescu, Craig, Glover (2020): Prenatal stress: Effects on fetal and child brain development. Int Rev Neurobiol. 2020;150:17-40. doi: 10.1016/bs.irn.2019.11.002. PMID: 32204831. REVIEW ↥
Kacharava T, Nemsadze K, Inasaridze K (2024): Elevated level of prenatal testosterone and vitamin D3 deficiency during pregnancy, in the presence of prenatal maternal stress, and their association with the development of attention deficit hyperactivity disorder (ADHD)-like symptoms in toddlers. Pediatr Endocrinol Diabetes Metab. 2024;30(2):69-73. doi: 10.5114/pedm.2024.136278. PMID: 39026483; PMCID: PMC11249814. ↥ ↥ ↥
Rosenqvist, Sjölander, Ystrom, Larsson, Reichborn-Kjennerud (2018): Adverse family life events during pregnancy and ADHD symptoms in five-year-old offspring. J Child Psychol Psychiatry. 2018 Oct 27. doi: 10.1111/jcpp.12990. n = 34.751 ↥
Agapaki, Papagianni, Metallinou, Valavani, Mantzou, Kanelli, Eleftheriades, Spyropoulou, Zervas, Chrousos, Pervanidou (2022): Associations between Maternal and Offspring Hair Cortisol Concentrations and Child Behavioral Symptoms in Mother-Child Pairs with Perinatal Mental Disorders. Children (Basel). 2022 May 31;9(6):810. doi: 10.3390/children9060810. PMID: 35740747; PMCID: PMC9221619. ↥
Barzilay, Lawrence, Berliner, Gur, Leventer-Roberts, Weizman, Feldman (2019): Association between prenatal exposure to a 1-month period of repeated rocket attacks and neuropsychiatric outcomes up through age 9: a retrospective cohort study. Eur Child Adolesc Psychiatry. 2019 Nov 4. doi: 10.1007/s00787-019-01426-1. n = 14.053 ↥
Grizenko, Shayan, Polotskaia, Ter-Stepanian, Joober (2008): Relation of maternal stress during pregnancy to symptom severity and response to treatment in children with ADHD; J Psychiatry Neurosci. 2008 Jan; 33(1): 10–16. PMCID: PMC2186370 ↥
Glover (2015): Prenatal stress and its effects on the fetus and the child: possible underlying biological mechanisms. Adv Neurobiol. 2015;10:269-83. doi: 10.1007/978-1-4939-1372-5_13. ↥
Van den Bergh, B. R.H. and Marcoen, A. (2004), High Antenatal Maternal Anxiety Is Related to ADHD Symptoms, Externalizing Problems, and Anxiety in 8- and 9-Year-Olds. Child Development, 75: 1085–1097. doi:10.1111/j.1467-8624.2004.00727.x ↥
Andreasen JJ, Tobiasen BB, Jensen RC, Boye H, Jensen TK, Bilenberg N, Andersen MS, Glintborg D (2023): Maternal cortisol in 3rd trimester is associated with traits of neurodevelopmental disorder in offspring. Odense Child Cohort. Psychoneuroendocrinology. 2023 Aug;154:106293. doi: 10.1016/j.psyneuen.2023.106293. PMID: 37207405. n = 717 Mutter-Kind-Paare ↥
O’Donnell, Glover, Lahti, Lahti, Edgar, Räikkönen, O’Connor (2017): Maternal prenatal anxiety and child COMT genotype predict working memory and symptoms of ADHD. PLoS One. 2017 Jun 14;12(6):e0177506. doi: 10.1371/journal.pone.0177506. eCollection 2017. ↥
Choudhry, Sengupta, Grizenko, Fortier, Thakur, Bellingham, Joober (2012): LPHN3 and attention-deficit/hyperactivity disorder: interaction with maternal stress during pregnancy. J Child Psychol Psychiatry. 2012 Aug;53(8):892-902. doi: 10.1111/j.1469-7610.2012.02551.x. PMID: 22486528. ↥
Grizenko N, Paci M, Joober R (2010): Is the inattentive subtype of ADHD different from the combined/hyperactive subtype? J Atten Disord. 2010 May;13(6):649-57. doi: 10.1177/1087054709347200. PMID: 19767592. ↥
Bronson, Bale (2014): Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology. 2014 Jul;155(7):2635-46. doi: 10.1210/en.2014-1040. ↥
Shaw, Crombie, Zakar, Palliser, Hirst (2019): Perinatal compromise contributes to programming of GABAergic and glutamatergic systems leading to long-term effects on offspring behaviour. J Neuroendocrinol. 2019 Nov 23:e12814. doi: 10.1111/jne.12814. ↥ ↥
Provençal, Arloth, Cattaneo, Anacker, Cattane, Wiechmann, Röh, Ködel, Klengel, Czamara, Müller, Lahti; PREDO team, Räikkönen, Pariante, Binder (2019): Glucocorticoid exposure during hippocampal neurogenesis primes future stress response by inducing changes in DNA methylation. Proc Natl Acad Sci U S A. 2019 Aug 9. pii: 201820842. doi: 10.1073/pnas.1820842116. ↥
Finik, Buthmann, Zhang, Go, Nomura (2020): Placental Gene Expression and Offspring Temperament Trajectories: Predicting Negative Affect in Early Childhood. J Abnorm Child Psychol. 2020 Jun;48(6):783-795. doi: 10.1007/s10802-020-00632-9. PMID: 32185610; PMCID: PMC7242121. ↥
Stonawski, Frey, Golub, Moll, Heinrich, Eichler (2018): [Epigenetic modifications in children associated with maternal emotional stress during pregnancy]. [Article in German] Z Kinder Jugendpsychiatr Psychother. 2018 Mar;46(2):155-167. doi: 10.1024/1422-4917/a000515. ↥
Suarez, Lahti, Lahti-Pulkkinen, Girchenko, Czamara, Arloth, Malmberg, Hämäläinen, Kajantie, Laivuori, Villa, Reynolds, Provençal, Binder, Räikkönen (2020): A polyepigenetic glucocorticoid exposure score at birth and childhood mental and behavioral disorders. Neurobiol Stress. 2020 Nov 21;13:100275. doi: 10.1016/j.ynstr.2020.100275. PMID: 33344728; PMCID: PMC7739178. n = 814 Kinder / childs von / of n = 408 Müttern / mothers ↥
Hanć, Gomula, Nowak-Szczepanska, Chakraborty, Kozieł (2022): Prenatal and early postnatal exposure to a natural disaster and Attention-Deficit/Hyperactivity Disorder symptoms in Indian children. Sci Rep. 2022 Sep 28;12(1):16235. doi: 10.1038/s41598-022-20609-6. PMID: 36171270. ↥
Dy, Guan, Sampath-Kumar, Richardson, Yang (2008): Placental 11beta-hydroxysteroid dehydrogenase type 2 is reduced in pregnancies complicated with idiopathic intrauterine growth Restriction: evidence that this is associated with an attenuated ratio of cortisone to cortisol in the umbilical artery. Placenta. 2008 Feb;29(2):193-200. doi: 10.1016/j.placenta.2007.10.010. PMID: 18061258. ↥
Zhu, Wang, Zuo, Sun (2019): Mechanisms for establishment of the placental glucocorticoid barrier, a guard for life. Cell Mol Life Sci. 2019 Jan;76(1):13-26. doi: 10.1007/s00018-018-2918-5. PMID: 30225585. REVIEW ↥ ↥ ↥
Doi, Usui, Shimada (2022): Prenatal Environment and Neurodevelopmental Disorders. Front Endocrinol (Lausanne). 2022 Mar 15;13:860110. doi: 10.3389/fendo.2022.860110. PMID: 35370942; PMCID: PMC8964779., REVIEW ↥
Babenko, Kovalchuk, Metz (2015): Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev. 2015 Jan;48:70-91. doi: 10.1016/j.neubiorev.2014.11.013. PMID: 25464029. REVIEW ↥
Doi, Oka, Taniguchi, Sato (2021): Transient expansion of the expression region of Hsd11b1, encoding 11β-hydroxysteroid dehydrogenase type 1, in the developing mouse neocortex. J Neurochem. 2021 Nov;159(4):778-788. doi: 10.1111/jnc.15505. PMID: 34490902. ↥
Mittal VA, Ellman LM, Cannon TD (2008): Gene-environment interaction and covariation in schizophrenia: the role of obstetric complications. Schizophr Bull. 2008 Nov;34(6):1083-94. doi: 10.1093/schbul/sbn080. PMID: 18635675; PMCID: PMC2632505. REVIEW ↥ ↥
Maleki, Bashirian, Soltanian, Jenabi, Farhadinasab (2021): Association between polycystic ovary syndrome and risk of attention-deficit/hyperactivity disorder in offspring: a meta-analysis. Clin Exp Pediatr. 2021 Apr 15. doi: 10.3345/cep.2021.00178. PMID: 33872487. METASTUDIE ↥
Kasum, Oresković (2010): Treatment of ovarian hyperstimulation syndrome: new insights. Acta Clin Croat. 2010 Dec;49(4):421-7. PMID: 21830453. REVIEW ↥
Bracero, Zacur (2001): Polycystic ovary syndrome and hyperprolactinemia. Obstet Gynecol Clin North Am. 2001 Mar;28(1):77-84. doi: 10.1016/s0889-8545(05)70186-8. PMID: 11293005. REVIEW ↥
Dalgaard, Andersen, Jensen, Larsen, Find, Boye, Jensen, Bilenberg, Glintborg (2021): Maternal polycystic ovary syndrome and attention deficit hyperactivity disorder in offspring at 3 years of age: Odense Child Cohort. Acta Obstet Gynecol Scand. 2021 Sep 6. doi: 10.1111/aogs.14259. PMID: 34490610. n = 1.776 Mütter ↥
Zhang Y, Lu D, Guo VY, Wang Y, Qiu S, Zhang J, Zhang Y, Chen W, Wang B, Yang W (2023): Association between maternal polycystic ovary syndrome and attention-deficit/hyperactivity disorder in offspring aged 3-6 years: A Chinese population-based study. Front Public Health. 2023 Jan 9;10:1032315. doi: 10.3389/fpubh.2022.1032315. PMID: 36699874; PMCID: PMC9868860. ↥
Hergüner S, Harmancı H, Toy H. Attention deficit-hyperactivity disorder symptoms in women with polycystic ovary syndrome. Int J Psychiatry Med. 2015;50(3):317-25. doi: 10.1177/0091217415610311. PMID: 26449924. n = 80 ↥
Galera, Heude, Forhan, Bernard, Peyre, Van der Waerden, Pryor, Bouvard, Melchior, Lioret, de Lauzon-Guillain (2018): EDEN Mother-Child Cohort Study Group. Prenatal diet and children’s trajectories of hyperactivity-inattention and conduct problems from 3 to 8 years: the EDEN mother-child cohort. J Child Psychol Psychiatry. 2018 Sep;59(9):1003-1011. doi: 10.1111/jcpp.12898. PMID: 29573342. n = 1.242 Mutter-Kind-Paare / mother-child pairs ↥
Gustavson, Ask, Ystrom, Stoltenberg, Lipkin, Surén, Håberg, Magnus, Knudsen, Eilertsen, Bresnahan, Aase, Mjaaland, Susser, Hornig, Reichborn-Kjennerud (2019): Maternal fever during pregnancy and offspring attention deficit hyperactivity disorder. Sci Rep. 2019 Jul 2;9(1):9519. doi: 10.1038/s41598-019-45920-7. ↥ ↥
Brynge, Gardner, Sjöqvist, Karlsson, Dalman (2022): Maternal levels of acute phase proteins in early pregnancy and risk of autism spectrum disorders in offspring. Transl Psychiatry. 2022 Apr 7;12(1):148. doi: 10.1038/s41398-022-01907-z. PMID: 35393396. ↥
Lin PC, Liang CS, Tsai CK, Tsai SJ, Chen TJ, Bai YM, Chen MH (2022): Associations of a family history of lupus with the risks of lupus and major psychiatric disorders in first-degree relatives. QJM. 2022 Jun 27:hcac153. doi: 10.1093/qjmed/hcac153. PMID: 35758635. ↥
Libutzki B, Neukirch B, Reif A, Hartman CA (2024): Somatic burden of attention-deficit/hyperactivity disorder across the lifecourse. Acta Psychiatr Scand. 2024 Aug;150(2):105-117. doi: 10.1111/acps.13694. PMID: 38804256. ↥
Tamayo JM, Osman HC, Schwartzer JJ, Ashwood P (2023): The influence of asthma on neuroinflammation and neurodevelopment: From epidemiology to basic models. Brain Behav Immun. 2023 Dec 8;116:218-228. doi: 10.1016/j.bbi.2023.12.003. PMID: 38070621. REVIEW ↥
Liu, Dalsgaard, Olsen, Li, Wright, Momen (2019): Parental asthma occurrence, exacerbations and risk of attention-deficit/hyperactivity disorder. Brain Behav Immun. 2019 Aug 30. pii: S0889-1591(19)30738-X. doi: 10.1016/j.bbi.2019.08.198. n = 961.202 ↥
Cowell, Bellinger, Wright, Wright (2019): Antenatal active maternal asthma and other atopic disorders is associated with ADHD behaviors among school-aged children. Brain Behav Immun. 2019 Aug;80:871-878. doi: 10.1016/j.bbi.2019.05.040. ↥
Zeng, Tang, Yue, Li, Qiu, Hu, Tang, Wang, Yang, Qu, Mu (2019): Cumulative evidence for association of parental diabetes mellitus and attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev. 2019 Nov 7. pii: S0149-7634(19)30721-3. doi: 10.1016/j.neubiorev.2019.11.003. ↥
Ornoy, Becker, Weinstein-Fudim, Ergaz (2021): Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring. A Clinical Review. Int J Mol Sci. 2021 Mar 15;22(6):2965. doi: 10.3390/ijms22062965. PMID: 33803995. REVIEW ↥
Rodolaki K, Pergialiotis V, Iakovidou N, Boutsikou T, Iliodromiti Z, Kanaka-Gantenbein C (2023): The impact of maternal diabetes on the future health and neurodevelopment of the offspring: a review of the evidence. Front Endocrinol (Lausanne). 2023 Jul 3;14:1125628. doi: 10.3389/fendo.2023.1125628. PMID: 37469977; PMCID: PMC10352101. REVIEW ↥
Chen S, Persson M, Wang R, Dalman C, Lee BK, Karlsson H, Gardner RM (2023): Random capillary glucose levels throughout pregnancy, obstetric and neonatal outcomes, and long-term neurodevelopmental conditions in children: a group-based trajectory analysis. BMC Med. 2023 Jul 19;21(1):260. doi: 10.1186/s12916-023-02926-3. PMID: 37468907; PMCID: PMC10354916. ↥
Lin, Lin, Chou, Lee, Hong (2019): Infants of Mothers With Diabetes and Subsequent Attention Deficit Hyperactivity Disorder: A Retrospective Cohort Study. Front Pediatr. 2019 Nov 4;7:452. doi: 10.3389/fped.2019.00452. eCollection 2019. ↥
Kong, Nilsson, Brismar, Gissler, Lavebratt (2020): Associations of Different Types of Maternal Diabetes and Body Mass Index With Offspring Psychiatric Disorders. JAMA Netw Open. 2020 Feb 5;3(2):e1920787. doi: 10.1001/jamanetworkopen.2019.20787. PMID: 32031649. n = 649.043 ↥
Li DJ, Tsai SJ, Chen TJ, Liang CS, Chen MH (2024): Risk of major mental disorders in the offspring of parents with migraine. Ann Gen Psychiatry. 2024 Jun 22;23(1):23. doi: 10.1186/s12991-024-00508-y. PMID: 38909222; PMCID: PMC11193281. ↥
Wiegersma, Dalman, Lee, Karlsson, Gardner (2019): Association of Prenatal Maternal Anemia With Neurodevelopmental Disorders. JAMA Psychiatry. 2019 Sep 18:1-12. doi: 10.1001/jamapsychiatry.2019.2309. ↥
Ayubi E, Mansori K (2023): Maternal Infection during Pregnancy and Attention-Deficit Hyperactivity Disorder in Children: A Systematic Review and Meta-Analysis. Iran J Public Health. 2022 Dec;51(12):2674-2687. doi: 10.18502/ijph.v51i12.11458. PMID: 36742242; PMCID: PMC9874197. ↥
Borbye-Lorenzen N, Holmgaard S, Ottosson F, Nudel R, Appadurai V, Laursen TM, Bækvad-Hansen M, Bybjerg-Grauholm J, Nordentoft M, Børglum AD, Mortensen PB, Werge T, Benros ME, Hougaard DM, Skogstrand K (2025): High level of immunoglobulin G targeting mycoplasma or cytomegalovirus in the newborn increases risk of ADHD. Brain Behav Immun. 2025 Jan;123:99-107. doi: 10.1016/j.bbi.2024.09.009. PMID: 39260764. ↥ ↥
Yates EF, Mulkey SB (2024): Viral infections in pregnancy and impact on offspring neurodevelopment: mechanisms and lessons learned. Pediatr Res. 2024 Mar 20. doi: 10.1038/s41390-024-03145-z. PMID: 38509227. REVIEW ↥
Verlaet, Noriega, Hermans, Savelkoul (2014): Nutrition, immunological mechanisms and dietary immunomodulation in ADHD. Eur Child Adolesc Psychiatry. 2014 Jul;23(7):519-29. doi: 10.1007/s00787-014-0522-2. PMID: 24493267. REVIEW ↥
Hutton J (2023): Developmental Outcomes in Children Born to Women with Possible Subclinical Rubella Exposures During Pregnancy. J Med Virol. 2023 Jan 21. doi: 10.1002/jmv.28517. PMID: 36680415. ↥
Simanek AM, Meier HC (2015): Association Between Prenatal Exposure to Maternal Infection and Offspring Mood Disorders: A Review of the Literature. Curr Probl Pediatr Adolesc Health Care. 2015 Nov;45(11):325-64. doi: 10.1016/j.cppeds.2015.06.008. PMID: 26476880. REVIEW ↥ ↥
Flinkkilä E, Keski-Rahkonen A, Marttunen M, Raevuori A (2016): Prenatal Inflammation, Infections and Mental Disorders. Psychopathology. 2016;49(5):317-333. doi: 10.1159/000448054. PMID: 27529630. REVIEW ↥
Gibson B, Goodfriend E, Zhong Y, Melhem NM (2023): Fetal inflammatory response and risk for psychiatric disorders. Transl Psychiatry. 2023 Jun 24;13(1):224. doi: 10.1038/s41398-023-02505-3. PMID: 37355708; PMCID: PMC10290670. ↥
Nijsten, Jansen, Limpens, Finken, Koot, Grooten, Roseboom, Painter (2022): Long-term health outcomes of children born to mothers with hyperemesis gravidarum: a systematic review and meta-analysis. Am J Obstet Gynecol. 2022 Mar 30:S0002-9378(22)00249-6. doi: 10.1016/j.ajog.2022.03.052. PMID: 35367190. ↥
Eyles, Burne, McGrath (2013): Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol. 2013 Jan;34(1):47-64. doi: 10.1016/j.yfrne.2012.07.001. PMID: 22796576. REVIEW ↥
Kesby, Eyles, Burne, McGrath (2011): The effects of vitamin D on brain development and adult brain function. Mol Cell Endocrinol. 2011 Dec 5;347(1-2):121-7. doi: 10.1016/j.mce.2011.05.014. PMID: 21664231. REVIEW ↥
Eyles, Feron, Cui, Kesby, Harms, Ko, McGrath, Burne (2009): Developmental vitamin D deficiency causes abnormal brain development, Psychoneuroendocrinology, Volume 34, Supplement 1, 2009, Pages S247-S257, ISSN 0306-4530, https://doi.org/10.1016/j.psyneuen.2009.04.015. ↥
Almeras, Eyles, Benech, Laffite, Villard, Patatian, Boucraut, Mackay‐Sim, McGrath, Féron (2007): Developmental vitamin D deficiency alters brain protein expression in the adult rat: Implications for neuropsychiatric disorders. Proteomics, 7: 769-780. https://doi.org/10.1002/pmic.200600392 ↥
Chien MC, Huang CY, Wang JH, Shih CL, Wu P (2024): Effects of vitamin D in pregnancy on maternal and offspring health-related outcomes: An umbrella review of systematic review and meta-analyses. Nutr Diabetes. 2024 May 30;14(1):35. doi: 10.1038/s41387-024-00296-0. PMID: 38816412; PMCID: PMC11139885. ↥
Upadhyaya S, Ståhlberg T, Silwal S, Arrhenius B, Sourander A (2022): Maternal Vitamin D Levels during Pregnancy and Offspring Psychiatric Outcomes: A Systematic Review. Int J Mol Sci. 2022 Dec 21;24(1):63. doi: 10.3390/ijms24010063. PMID: 36613505; PMCID: PMC9820292. ↥ ↥
Morales E, Julvez J, Torrent M, Ballester F, Rodríguez-Bernal CL, Andiarena A, Vegas O, Castilla AM, Rodriguez-Dehli C, Tardón A, Sunyer J (2015): Vitamin D in Pregnancy and Attention Deficit Hyperactivity Disorder-like Symptoms in Childhood. Epidemiology. 2015 Jul;26(4):458-65. doi: 10.1097/EDE.0000000000000292. PMID: 25867115. ↥
Aagaard K, Møllegaard Jepsen JR, Sevelsted A, Horner D, Vinding R, Rosenberg JB, Brustad N, Eliasen A, Mohammadzadeh P, Følsgaard N, Hernández-Lorca M, Fagerlund B, Glenthøj BY, Rasmussen MA, Bilenberg N, Stokholm J, Bønnelykke K, Ebdrup BH, Chawes B (2023): High-dose vitamin D3 supplementation in pregnancy and risk of neurodevelopmental disorders in the children at age 10: A randomized clinical trial. Am J Clin Nutr. 2023 Dec 9:S0002-9165(23)66298-7. doi: 10.1016/j.ajcnut.2023.12.002. PMID: 38072183. N = 496 ↥
Sucksdorff M, Brown AS, Chudal R, Surcel HM, Hinkka-Yli-Salomäki S, Cheslack-Postava K, Gyllenberg D, Sourander A (2021): Maternal Vitamin D Levels and the Risk of Offspring Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry. 2021 Jan;60(1):142-151.e2. doi: 10.1016/j.jaac.2019.11.021. PMID: 31863882; PMCID: PMC8330061. ↥
Thinggaard CM, Dalgård C, Möller S, Christesen HBT, Bilenberg N (2024): Vitamin D status in pregnancy and cord blood is associated with symptoms of attention-deficit hyperactivity disorder at age 5 years: Results from Odense Child Cohort. Aust N Z J Psychiatry. 2024 Aug 16:48674241272018. doi: 10.1177/00048674241272018. PMID: 39152569. ↥
Kesby JP, Cui X, Ko P, McGrath JJ, Burne TH, Eyles DW (2009): Developmental vitamin D deficiency alters dopamine turnover in neonatal rat forebrain. Neurosci Lett. 2009 Sep 18;461(2):155-8. doi: 10.1016/j.neulet.2009.05.070. PMID: 19500655. ↥
Pertile RA, Cui X, Eyles DW (2016): Vitamin D signaling and the differentiation of developing dopamine systems. Neuroscience. 2016 Oct 1;333:193-203. doi: 10.1016/j.neuroscience.2016.07.020. PMID: 27450565. ↥
Strøm, Halldorsson, Hansen, Granström, Maslova, Petersen, Cohen, Olsen (2014): Vitamin D measured in maternal serum and offspring neurodevelopmental outcomes: a prospective study with long-term follow-up. Ann Nutr Metab. 2014;64(3-4):254-61. doi: 10.1159/000365030. n = 850 ↥
López-Vicente, Sunyer, Lertxundi, González, Rodríguez-Dehli, Espada Sáenz-Torre, Vrijheid, Tardón, Llop, Torrent, Ibarluzea, Guxens (2019): Maternal circulating Vitamin D3 levels during pregnancy and behaviour across childhood. Sci Rep. 2019 Oct 15;9(1):14792. doi: 10.1038/s41598-019-51325-3. ↥
Wootton RE, Dack K, Jones HJ, Riglin L, Madley-Dowd P, Borges C, Pagoni P, Roth C, Brantsæter AL, Corfield EC, Stoltenberg C, Øyen AS, Davey Smith G, Ask H, Thapar A, Stergiakouli E, Havdahl A (2024): Testing maternal effects of vitamin-D and omega-3 levels on offspring neurodevelopmental traits in the Norwegian Mother, Father and Child Cohort Study. Psychol Med. 2024 Sep 9;54(12):1-11. doi: 10.1017/S0033291724001466. PMID: 39248077; PMCID: PMC11496238. ↥
Sucksdorff, Brown, Chudal, Surcel, Hinkka-Yli-Salomäki, Cheslack-Postava, Gyllenberg, Sourander (2019): Maternal Vitamin D Levels and the Risk of Offspring Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry. 2019 Dec 18. pii: S0890-8567(19)32232-4. doi: 10.1016/j.jaac.2019.11.021. n = 2.124 ↥
Ye X, Zhou Q, Ren P, Xiang W, Xiao L. The Synaptic and Circuit Functions of Vitamin D in Neurodevelopment Disorders. Neuropsychiatr Dis Treat. 2023 Jul 3;19:1515-1530. doi: 10.2147/NDT.S407731. PMID: 37424961; PMCID: PMC10327924. REVIEW ↥
Martins, Bandarra, Figueiredo-Braga (2019): The role of marine omega-3 in human neurodevelopment, including Autism Spectrum Disorders and Attention-Deficit/Hyperactivity Disorder – a review. Crit Rev Food Sci Nutr. 2019 Mar 18:1-16. doi: 10.1080/10408398.2019.1573800. REVIEW ↥
López-Vicente M, Ribas Fitó N, Vilor-Tejedor N, Garcia-Esteban R, Fernández-Barrés S, Dadvand P, Murcia M, Rebagliato M, Ibarluzea J, Lertxundi A, Fernández-Somoano A, Tardón A, López-Sabater MC, Romaguera D, Vrijheid M, Sunyer J, Julvez J (2019): Prenatal Omega-6:Omega-3 Ratio and Attention Deficit and Hyperactivity Disorder Symptoms. J Pediatr. 2019 Jun;209:204-211.e4. doi: 10.1016/j.jpeds.2019.02.022. PMID: 30929929. ↥
Şair, Sevinçok, Kutlu, Çakaloz, Sevinçok (2019): The affective temperament traits and pregnancy-related depression in mothers may constitute risk factors for their children with attention deficit and hyperactivity disorder. J Obstet Gynaecol. 2019 Dec 8:1-6. doi: 10.1080/01443615.2019.1679741. ↥
Hope H, Pierce M, Gabr H, Radojčić MR, Swift E, Taxiarchi VP, Abel KM (2024): The causal association between maternal depression, anxiety, and infection in pregnancy and neurodevelopmental disorders among 410 461 children: a population study using quasi-negative control cohorts and sibling analysis. Psychol Med. 2024 Jan 11:1-9. doi: 10.1017/S0033291723003604. PMID: 38205522. n = 410.461 ↥
Lin YH, Tsai SJ, Bai YM, Chen TJ, Chen MH (2024): Risk of Neurodevelopmental Disorders in Offspring of Parents with Major Depressive Disorder: A Birth Cohort Study. J Autism Dev Disord. 2024 Aug 1. doi: 10.1007/s10803-024-06502-3. PMID: 39088144. ↥
Koutra, Margetaki, Kampouri, Kyriklaki, Roumeliotaki, Vafeiadi, Bitsios, Kogevinas, Chatzi (2022) Maternal sleep disturbances during late pregnancy and child neuropsychological and behavioral development in early childhood. Eur Child Adolesc Psychiatry. 2022 Aug 4. doi: 10.1007/s00787-022-02053-z. PMID: 35927528. n = 638 Mutter-Kind-Paare / mother-child pairs ↥
Lugo-Candelas C, Hwei T, Lee S, Lucchini M, Smaniotto Aizza A, Kahn LG, Buss C, O’Connor TG, Ghassabian A, Padula AM, Aschner J, Deoni S, Margolis AE, Canino G, Monk C, Posner J, Duarte CS (2023): Prenatal sleep health and risk of offspring ADHD symptomatology and associated phenotypes: a prospective analysis of timing and sex differences in the ECHO cohort. Lancet Reg Health Am. 2023 Oct 9;27:100609. doi: 10.1016/j.lana.2023.100609. PMID: 38106969; PMCID: PMC10725065. n = 794 Mutter-Kind-Paare / mother-child pairs ↥
Bitsko RH, Holbrook JR, O’Masta B, Maher B, Cerles A, Saadeh K, Mahmooth Z, MacMillan LM, Rush M, Kaminski JW (2022): A Systematic Review and Meta-analysis of Prenatal, Birth, and Postnatal Factors Associated with Attention-Deficit/Hyperactivity Disorder in Children. Prev Sci. 2022 Mar 18:10.1007/s11121-022-01359-3. doi: 10.1007/s11121-022-01359-3. PMID: 35303250; PMCID: PMC9482663. REVIEW und METASTUDIE ↥
Takahashi N, Nishimura T, Harada T, Okumura A, Iwabuchi T, Rahman MS, Kuwabara H, Takagai S, Usui N, Makinodan M, Matsuzaki H, Ozaki N, Itoh H, Nomura Y, Newcorn JH, Tsuchiya KJ (2023): Interaction of genetic liability for attention deficit hyperactivity disorder (ADHD) and perinatal inflammation contributes to ADHD symptoms in children. Brain Behav Immun Health. 2023 May 18;30:100630. doi: 10.1016/j.bbih.2023.100630. PMID: 37251547; PMCID: PMC10213186. ↥
Gustafsson HC, Sullivan EL, Battison EAJ, Holton KF, Graham AM, Karalunas SL, Fair DA, Loftis JM, Nigg JT (2020): Evaluation of maternal inflammation as a marker of future offspring ADHD symptoms: A prospective investigation. Brain Behav Immun. 2020 Oct;89:350-356. doi: 10.1016/j.bbi.2020.07.019. PMID: 32707260; PMCID: PMC7703804. ↥
Nilsen K, Staff AC, Krogsrud SK. Paracetamol use in pregnancy: Not as safe as we may think? Acta Obstet Gynecol Scand. 2023 Mar 20. doi: 10.1111/aogs.14557. PMID: 36941046. ↥
Brandlistuen RE, Ystrom E, Nulman I, Koren G, Nordeng H. Prenatal paracetamol exposure and child neurodevelopment: a sibling-controlled cohort study. Int J Epidemiol. 2013 Dec;42(6):1702-13. doi: 10.1093/ije/dyt183. PubMed PMID: 24163279; PubMed Central PMCID: PMC3887567. n = 48.631 ↥
Liew Z, Ritz B, Rebordosa C, Lee PC, Olsen J. Acetaminophen Use During Pregnancy, Behavioral Problems, and Hyperkinetic Disorders. JAMA Pediatr. 2014 Feb 24. doi: 10.1001/jamapediatrics.2013.4914. PubMed PMID:24566677. n = 64.322 ↥
Woodbury ML, Geiger SD, Schantz SL (2024): The relationship of prenatal acetaminophen exposure and attention-related behavior in early childhood. Neurotoxicol Teratol. 2024 Jan-Feb;101:107319. doi: 10.1016/j.ntt.2024.107319. PMID: 38199313. ↥
Liew, Kioumourtzoglou, Roberts, O’Reilly, Ascherio, Weisskopf (2019): Use of Negative Control Exposure Analysis to Evaluate Confounding: An Example of Acetaminophen Exposure and Attention-Deficit/Hyperactivity Disorder in Nurses’ Health Study II. Am J Epidemiol. 2019 Apr 1;188(4):768-775. doi: 10.1093/aje/kwy288. ↥
Masarwa, Levine, Gorelik, Reif, Perlman, Matok (2019): Prenatal Exposure to Acetaminophen and Risk for Attention Deficit Hyperactivity Disorder and Autistic Spectrum Disorder: A Systematic Review, Meta-Analysis, and Meta-Regression Analysis of Cohort Studies. Am J Epidemiol. 2018 Aug 1;187(8):1817-1827. doi: 10.1093/aje/kwy086. REVIEW ↥
Gilman, Hornig (2019): The Disillusionment of DOHaD Epidemiology. Am J Epidemiol. 2019 Oct 2. pii: kwz214. doi: 10.1093/aje/kwz214. ↥
Ji, Azuine, Zhang, Hou, Hong, Wang, Riley, Pearson, Zuckerman, Wang (2019): Association of Cord Plasma Biomarkers of In Utero Acetaminophen Exposure With Risk of Attention-Deficit/Hyperactivity Disorderand Autism Spectrum Disorder in Childhood. JAMA Psychiatry. 2019 Oct 30:1-11. doi: 10.1001/jamapsychiatry.2019.3259. ↥
Chen, Pan, Wang, Hsu, Huang, Su, Li, Lin, Tsai, Chen, Bai (2019): Prenatal Exposure to Acetaminophen and the Risk of Attention-Deficit/Hyperactivity Disorder: A Nationwide Study in Taiwan. J Clin Psychiatry. 2019 Sep 10;80(5). pii: 18m12612. doi: 10.4088/JCP.18m12612. n = 950 Mutter-Kind-Paare ↥
Khan, Kabiraj, Ahmed, Adam, Mannuru, Ramesh, Shahzad, Chaduvula, Khan (2022): A Systematic Review of the Link Between Autism Spectrum Disorder and Acetaminophen: A Mystery to Resolve. Cureus. 2022 Jul 18;14(7):e26995. doi: 10.7759/cureus.26995. PMID: 35989852; PMCID: PMC9385573. ↥
Ricci C, Albanese CM, Pablo LA, Li J, Fatima M, Barrett K, Levis B, Brown HK (2023): In utero acetaminophen exposure and child neurodevelopmental outcomes: Systematic review and meta-analysis. Paediatr Perinat Epidemiol. 2023 Mar 20. doi: 10.1111/ppe.12963. PMID: 36939050. Metaanalyse n = 367.775 ↥
Masarwa, Platt, Filion (2020): Acetaminophen use during pregnancy and the risk of attention deficit hyperactivity disorder: A causal association or bias? Paediatr Perinat Epidemiol. 2020 Jan 9. doi: 10.1111/ppe.12615. ↥
Damkier (2020): Simple twist of fate: In utero exposure to acetaminophen and risk of childhood Attention Deficit Hyperactivity Disorder. Paediatr Perinat Epidemiol. 2020 May;34(3):230-232. doi: 10.1111/ppe.12654. PMID: 32107788. ↥
Worringer E, Rowland K (2024): Acetaminophen use during pregnancy was not linked to autism, ADHD, or intellectual disability in offspring. Ann Intern Med. 2024 Aug;177(8):JC95. doi: 10.7326/ANNALS-24-00960-JC. PMID: 39102714. ↥
Anand, Raghavan, Wang, Hong, Azuine, Pearson, Zuckerman, Xie, Wang (2021): Perinatal Acetaminophen Exposure and Childhood Attention-Deficit/Hyperactivity Disorder (ADHD): Exploring the Role of Umbilical Cord Plasma Metabolites in Oxidative Stress Pathways. Brain Sci. 2021 Sep 30;11(10):1302. doi: 10.3390/brainsci11101302. PMID: 34679367; PMCID: PMC8533963. N = 568 ↥
Klein RM, Motomura VN, Debiasi JD, Moreira EG (2023): Gestational paracetamol exposure induces core behaviors of neurodevelopmental disorders in infant rats and modifies response to a cannabinoid agonist in females. Neurotoxicol Teratol. 2023 Jun 29;99:107279. doi: 10.1016/j.ntt.2023.107279. Epub ahead of print. PMID: 37391024. ↥
Halvorsen, Hesel, Østergaard, Danielsen (2019): In Utero Exposure to SSRIs and Development of Mental Disorders: A Systematic Review and Meta-analysis. Acta Psychiatr Scand. 2019 Apr 2. doi: 10.1111/acps.13030. METASTUDY ↥
Leshem R, Bar-Oz B, Diav-Citrin O, Gbaly S, Soliman J, Renoux C, Matok I (2021). Selective Serotonin Reuptake Inhibitors (SSRIs) and Serotonin Norepinephrine Reuptake Inhibitors (SNRIs) During Pregnancy and the Risk for Autism spectrum disorder (ASD) and Attention deficit hyperactivity disorder (ADHD) in the Offspring: A True Effect or a Bias? A Systematic Review & Meta-Analysis. Curr Neuropharmacol. 2021;19(6):896-906. doi: 10.2174/1570159X19666210303121059. PMID: 33655866; PMCID: PMC8686301. METASTUDY ↥
Araujo, Delgado, Paumgartten (2020): Antenatal exposure to antidepressant drugs and the risk of neurodevelopmental and psychiatric disorders: a systematic review. Cad Saude Publica. 2020 Jan 31;36(2):e00026619. doi: 10.1590/0102-311X00026619. PMID: 32022173. REVIEW ↥
Hartwig CAM, Robiyanto R, de Vos S, Bos JHJ, van Puijenbroek EP, Hak E, Schuiling-Veninga CCM (2022): In utero antidepressant exposure not associated with ADHD in the offspring: A case control sibling design. Front Pharmacol. 2022 Nov 10;13:1000018. doi: 10.3389/fphar.2022.1000018. PMID: 36438827; PMCID: PMC9684082. ↥
Clements, Castro, Blumenthal, Rosenfield, Murphy, Fava, Erb, Churchill, Kaimal, Doyle, Robinson, Smoller, Kohane, Perlis (2015): Prenatal antidepressant exposure is associated with risk for attention-deficit hyperactivity disorder but not autism spectrum disorder in a large health system. Molecular Psychiatry volume 20, pages 727–734 (2015) n = 3620 ↥
Liang, Chen, Miao, Christensen, Dalsgaard, Yuan, Li (2017): In utero exposure to β-2-adrenergic receptor agonist and attention-deficit/hyperactivity disorder in children. Eur Child Adolesc Psychiatry. 2017 Feb 9. doi: 10.1007/s00787-017-0956-4 n = 672.000 ↥
Dudukina E, Szépligeti SK, Karlsson P, Asomaning K, Daltveit AK, Hakkarainen K, Hoti F, Kieler H, Lunde A, Odsbu I, Rantanen M, Reutfors J, Saarelainen L, Ehrenstein V, Toft G (2023): Prenatal exposure to pregabalin, birth outcomes and neurodevelopment - a population-based cohort study in four Nordic countries. Drug Saf. 2023 Apr 26. doi: 10.1007/s40264-023-01307-2. Epub ahead of print. PMID: 37099261. ↥
Ai, Zhao, Shi, Zhu (2021): Antibiotic exposure and childhood attention-deficit/hyperactivity disorder: systematic review and meta-analysis. Psychopharmacology (Berl). 2021 Oct 23. doi: 10.1007/s00213-021-05989-3. PMID: 34687335. ↥
Tao Q, Shen Y, Li Y, Luo H, Yuan M, Gan J (2022): Prenatal exposure to antibiotics and risk of neurodevelopmental disorders in offspring: A systematic review and meta-analysis. Front Neurol. 2022 Nov 25;13:1045865. doi: 10.3389/fneur.2022.1045865. PMID: 36504646; PMCID: PMC9732381. ↥
Baldwin, Amaro (2019): Prescription of Valproate-Containing Medicines in Women of Childbearing Potential who have Psychiatric Disorders: Is It Worth the Risk? CNS Drugs. 2019 Dec 16. doi: 10.1007/s40263-019-00694-4. ↥
Imhoff-Hasse (2013): Valproatexposition des Fetus I: Risiko für autistische Störungen ist erhöht, Dtsch Arztebl 2013; 110(9): A-386 / B-352 / C-352 unter Verweis auf Bromley, Mawer, Briggs, Cheyne, Clayton-Smith, García-Fiñana, Kneen, Lucas, Shallcross, Baker, Liverpool and Manchester Neurodevelopment Group (2013): The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. J Neurol Neurosurg Psychiatry. 2013 Jun;84(6):637-43. doi: 10.1136/jnnp-2012-304270. ↥
Xu SC, Zhong Y, Jiang HY, Tang J (2024): Exposure to anti-seizure medication during pregnancy and the risk of autism and ADHD in offspring: a systematic review and meta-analysis. Front Neurol. 2024 Jul 22;15:1440145. doi: 10.3389/fneur.2024.1440145. PMID: 39105059; PMCID: PMC11298387. ↥
Khalife, Glover, Taanila, Ebeling, Järvelin, Rodriguez (2013): Prenatal Glucocorticoid Treatment and Later Mental Health in Children and Adolescents; Plos one, November 22, 2013; https://doi.org/10.1371/journal.pone.0081394, n = 222 ↥
Kapoor, Petropoulos, Matthews (2007): Fetal programming of hypothalamic-pituitary-adrenal (HPA) axis function and behavior by synthetic glucocorticoids. Brain Res Rev. 2008 Mar;57(2):586-95. ↥
Rakers, Schleußner, Muth, Hoyer, Rupprecht, Schiecke, Groten, Dreiling, Kozik, Schwab, Hoyer, Ligges (2022): Association between antenatal glucocorticoid exposure and the activity of the stress system, cognition, and behavior in 8- to 9-year-old children: A prospective observational study. Acta Obstet Gynecol Scand. 2022 Jun 2. doi: 10.1111/aogs.14386. PMID: 35652410. n = 69 ↥
Rakers F, Schleussner E, Cornelius A, Kluckow S, Muth I, Hoyer D, Rupprecht S, Schultze T, Schiecke K, Ligges C, Schwab M, Hoyer H (2024): Association between prenatal glucocorticoid exposure and adolescent neurodevelopment: An observational follow-up study. Acta Obstet Gynecol Scand. 2024 Aug;103(8):1530-1540. doi: 10.1111/aogs.14885. PMID: 38877646; PMCID: PMC11266634. ↥
Elberling F, Spulber S, Bose R, Keung HY, Ahola V, Zheng Z, Ceccatelli S (2023): Sex Differences in Long-term Outcome of Prenatal Exposure to Excess Glucocorticoids-Implications for Development of Psychiatric Disorders. Mol Neurobiol. 2023 Dec;60(12):7346-7361. doi: 10.1007/s12035-023-03522-5. PMID: 37561236; PMCID: PMC10657788. ↥
Kinjo, Ito, Seki, Fukuhara, Bolati, Arai, Suzuki (2019): Prenatal exposure to valproic acid is associated with altered neurocognitive function and neurogenesis in the dentate gyrus of male offspring rats. Brain Res. 2019 Aug 22;1723:146403. doi: 10.1016/j.brainres.2019.146403. ↥
Sakade, Yamanaka, Soumiya, Furukawa, Fukumitsu (2019): Exposure to valproic acid during middle to late-stage corticogenesis induces learning and social behavioral abnormalities with attention deficit/hyperactivity in adult mice. Biomed Res. 2019;40(5):179-188. doi: 10.2220/biomedres.40.179. ↥
Baronio D, Puttonen HAJ, Sundvik M, Semenova S, Lehtonen E, Panula P (2018): Embryonic exposure to valproic acid affects the histaminergic system and the social behaviour of adult zebrafish (Danio rerio). Br J Pharmacol. 2018 Mar;175(5):797-809. doi: 10.1111/bph.14124. PMID: 29235100; PMCID: PMC5811620. ↥
Ornoy A, Echefu B, Becker M (2023): Valproic Acid in Pregnancy Revisited: Neurobehavioral, Biochemical and Molecular Changes Affecting the Embryo and Fetus in Humans and in Animals: A Narrative Review. Int J Mol Sci. 2023 Dec 27;25(1):390. doi: 10.3390/ijms25010390. PMID: 38203562; PMCID: PMC10779436. ↥
Hjorth, Lupattelli, Handal, Spigset, Ystrom, Nordeng (2021): Prenatal Exposure to Non-Steroidal Anti-Inflammatory Drugs and Risk of Attention-Deficit/Hyperactivity Disorder – a Follow-Up Study in the Norwegian Mother, Father and Child Cohort. Pharmacoepidemiol Drug Saf. 2021 Apr 18. doi: 10.1002/pds.5250. PMID: 33866622. n = 56 340 / 34 961 ↥
Cortés-Albornoz, García-Guáqueta, Velez-van-Meerbeke, Talero-Gutiérrez (2021): Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients. 2021 Oct 8;13(10):3530. doi: 10.3390/nu13103530. PMID: 34684531; PMCID: PMC8538181. REVIEW ↥
Brandlistuen, Eivind Ystrom, Hernandez-Diaz, Skurtveit, Selmer, Handal, Nordeng, Sasayama (2017): Association of prenatal exposure to benzodiazepines and child internalizing problems: A sibling-controlled cohort study; PLoS One. 2017; 12(7): e0181042. doi: 10.1371/journal.pone.0181042; PMCID: PMC5528839; n = 71.996 ↥
Chen VC, Wu SI, Lin CF, Lu ML, Chen YL, Stewart R (2022): Association of Prenatal Exposure to Benzodiazepines With Development of Autism Spectrum and Attention-Deficit/Hyperactivity Disorders. JAMA Netw Open. 2022 Nov 1;5(11):e2243282. doi: 10.1001/jamanetworkopen.2022.43282. PMID: 36413366; PMCID: PMC9682429. n = 1.516.846 ↥
Suarez EA, Bushnell GA (2022): Association Between Attention-Deficit/Hyperactivity Disorder and Benzodiazepines and Z-Hypnotics in Pregnancy-Questions Remain. JAMA Netw Open. 2022 Dec 1;5(12):e2246896. doi: 10.1001/jamanetworkopen.2022.46896. PMID: 36520443. METASTUDIE ↥
Chan AYL, Gao L, Howard LM, Simonoff E, Coghill D, Ip P, Lau WCY, Taxis K, Wong ICK, Man KKC (2023): Maternal Benzodiazepines and Z-Drugs Use during Pregnancy and Adverse Birth and Neurodevelopmental Outcomes in Offspring: A Population-Based Cohort Study. Psychother Psychosom. 2023 Mar 10:1-11. doi: 10.1159/000529141. PMID: 36907183. ↥
Björkegren E, Svaleryd H (2023): Birth order and health disparities throughout the life course. Soc Sci Med. 2023 Feb;318:115605. doi: 10.1016/j.socscimed.2022.115605. PMID: 36630815. ↥
Cheslack-Postava, Sourander, Suominen, Jokiranta-Olkoniemi, McKeague, Brown (2020): Increased Risk of ADHD at Short and Long Interpregnancy Intervals in a National Birth Cohort. Paediatr Perinat Epidemiol. 2020 Mar 12. doi: 10.1111/ppe.12657. PMID: 32162359. n = 44.043 ↥
Mujtaba S, Patro IK, Patro N (2023): Multiple Early Life Stressors as Risk Factors for Neurodevelopmental Abnormalities in the F1 Wistar Rats. Brain Sci. 2023 Sep 22;13(10):1360. doi: 10.3390/brainsci13101360. PMID: 37891729; PMCID: PMC10605318. ↥
Levie, Bath, Guxens, Korevaar, Dineva, Fano, Ibarluzea, Llop, Murcia, Rayman, Sunyer, Peeters, Tiemeier (2020): Maternal Iodine Status During Pregnancy Is Not Consistently Associated with Attention-Deficit Hyperactivity Disorder or Autistic Traits in Children. J Nutr. 2020 Jun 1;150(6):1516-1528. doi: 10.1093/jn/nxaa051. PMID: 32171006; PMCID: PMC7269752. ↥
Gao X, Zhao Y, Wang N, Yang L. (2022): Migration modulates the prevalence of ASD and ADHD: a systematic review and meta-analysis. BMC Psychiatry. 2022 Jun 13;22(1):395. doi: 10.1186/s12888-022-04037-4. PMID: 35698047; PMCID: PMC9195277. METASTUDIE ↥
Díaz-López A, Sans JC, Julvez J, Fernandez-Bares S, Llop S, Rebagliato M, Lertxundi N, Santa-Marina L, Guxens M, Sunyer J, Arija V (2022): Maternal iron status during pregnancy and attention deficit/hyperactivity disorder symptoms in 7-year-old children: a prospective cohort study. Sci Rep. 2022 Dec 1;12(1):20762. doi: 10.1038/s41598-022-23432-1. PMID: 36456588; PMCID: PMC9715623. n = 1.204 ↥
Lo H, Weng SF, Tsai EM (2022): Neurodevelopmental Disorders in Offspring Conceived via In Vitro Fertilization vs Intracytoplasmic Sperm Injection. JAMA Netw Open. 2022 Dec 1;5(12):e2248141. doi: 10.1001/jamanetworkopen.2022.48141. PMID: 36547980. ↥
Solberg BS, Kvalvik LG, Instanes JT, Hartman CA, Klungsøyr K, Li L, Larsson H, Magnus P, Njølstad PR, Johansson S, Andreassen OA, Bakken NR, Bekkhus M, Austerberry C, Smajlagic D, Havdahl A, Corfield EC, Haavik J, Gjestad R, Zayats T (2023): Maternal fiber intake during pregnancy and development of Attention-Deficit/Hyperactivity Disorder Symptoms Across Childhood: The Norwegian Mother, Father and Child Cohort Study (MoBa). Biol Psychiatry. 2023 Dec 22:S0006-3223(23)01794-8. doi: 10.1016/j.biopsych.2023.12.017. PMID: 38142720. ↥