Dear reader of ADxS.org, please excuse the disruption.

ADxS.org needs around €58,500 in 2024. Unfortunately 99,8 % of our readers do not donate. If everyone reading this appeal made a small contribution, our fundraising campaign for 2024 would be over after a few days. This appeal is displayed 23,000 times a week, but only 75 people donate. If you find ADxS.org useful, please take a minute to support ADxS.org with your donation. Thank you very much!

Since 01.06.2021 ADxS.org is supported by the non-profit ADxS e.V. Donations to ADxS e.V. are tax-deductible in Germany (up to €300, the remittance slip is sufficient as a donation receipt).

If you would prefer to make an active contribution, you can find ideas for Participation or active support here.

$45213 of $63500 - as of 2024-10-31
71%
Header Image
7. Dopamine effect on receptors

Sitemap

7. Dopamine effect on receptors

Dopamine receptors are predominantly (and in vertebrates exclusively) coupled to G proteins. They are metabotropic receptors and therefore orders of magnitude slower than ionotropic receptors,1 and therefore longer lasting.
While ionotropic receptors directly open an ion channel, excitatory dopamine receptors activate an excitatory G protein,
which is located on the inside of the cell membrane near the receptor. This G protein activates an enzyme, which in turn produces a second messenger. This second messenger diffuses to nearby ion channels, attaches to them and opens them. Stimulation of an inhibitory dopamine receptor, on the other hand, activates inhibitory G proteins, which inhibit the production of second messengers.2

An important second messenger addressed by dopamine receptors is cyclic adenosine monophosphate, cAMP. in addition to opening ion channels, cAMP can also trigger gene transcription and alter the expression of specific genes.
There are 2 classes of dopamine receptors that differ according to G-protein partners and intracellular signaling mechanisms:3
The D1-like receptors (D1 and D5) are Gs/olf-coupled. Their activation increases intracellular cAMP and has an excitatory effect.
The D2-like receptors (D2, D3 and D4) are Gi/o coupled. Their activation reduces intracellular cAMP and has an inhibitory effect.

The D1-like dopamine receptors (D1 and D5) are activated “postsynaptically” by dopamine, which is released from the presynaptic neuron into the synaptic cleft. When activated, they increase neuronal activity. This is a phasic response.
The D2-like dopamine receptors are partly postsynaptic, but can also occur presynaptically. Presynaptic dopamine receptors are activated by extracellular dopamine leaking from the synapse. This action serves as an inhibitory feedback mechanism when the dopamine level exceeds the reuptake capacity.4 Postsynaptically, D2-like receptors have an inhibitory effect on the activity of the nerve cell

It is unclear whether dopamine transmission is mediated by a synaptic or a volume-dependent mechanism. Dopamine-dependent transmission works differently than a purely synaptic mechanism. While glutamate is present in the synaptic cleft for less than 1 ms, and the time course of NMDA-dependent transmission depends on the rate of deactivation of glutamate from the receptor (tau = 250-400 ms, dopamine must be present for about 100 ms to reach the full amplitude of the IPSC5

Rats with low dopamine receptor density in the striatum, i.e. with lower dopaminergic binding capacity, are more receptive to rewarding/reinforcing substances.6

In addition to signal transmission via the adenylyl cyclase-cAMP system (the most important mechanism of action), dopamine receptors also activate phospho-lipase C via the Gq/11 system and increase intracellular calcium levels. Dopamine receptors also interact with glutamate receptors and mobilize intracellular Ca2+ stores.7

Dopamine receptors can occur as monomers, as dimeric and/or as oligomeric complexes. This can occur by association of different subtypes, either alone or with other GPCRs and ligand-gated channels. Homodimers occur:

  • D1R-D2R
  • D2R-D4R
  • D1R-D3R
  • D2R-D3R
  • D2R-D5R

Dimer/oligomeric complexes have pharmacological and functional properties that differ from those of the receptors that form them. Oligomeric complexes with dopamine receptors can be associated with adenosine A1 and A2, serotonergic 5-HT2A, histaminergic H3, glutamatergic mGlu5 and NMDA receptors.8

7.1. Dopamine binds to many receptors and transporters; dopamine affinity

Dopamine binds not only to dopamine receptors, but also - even with similar affinity - to noradrenaline receptors, serotonin receptors and melatonin receptors as well as to dopamine transporters and noradrenaline transporters.910 (Sorting from affine to less affine). Within the receptors, there are again differences in affinity depending on the gene variant (sorting from affine to less affine).11

  • Dopamine receptors:
    • D4: pKi 7.6; Kd 450 [nM]a
      • DRD4-2R
      • DRD4-4R
      • DRD4-7R
    • D5: pKi 6.6; Kd 228 [nM]a
    • D3: pKi 6.3 - 7.4; Kd 27 [nM]a
    • D2: pKi 5.3 - 6.4; Kd 1705 [nM]a
      • D2 short (autoreceptors)
      • D2 long (heteroreceptors)
      • D2-D4 receptor heteromers
    • D1: pKi 4.3 - 5.6; Kd 2340 [nM]a
  • Dopamine transporter (DAT): pKi 5.3
  • Noradrenaline transporter (NET): pKi 4.55
  • Noradrenaline receptors:
    • Α2-AR: pKi 6.01
    • Α1-AR receptors: pKi 5.6
    • Β1-ARs: pKi 5.0
    • Β2-ARs: pKi 4.3
  • Serotonin transporter (SERT): pKi 4.53
  • Melatonin receptors:
    • MT1A: pKi 5.15
    • MT1B: pKi 5.04

(Ki, Kd: dissociation constant, the lower, the more affine)12
(pKi: negative logarithmic dissociation constant (negative logarithm of Ki), the higher the more affine)

D3 and D5 receptors have a high affinity, D1 and D2 receptors have a low affinity for dopamine.13 The earlier model that D1 has a low affinity and D2 a high affinity is outdated. The preference of D2 receptors for tonic dopamine and of D1R for phasic dopamine derived from this outdated view has also not been confirmed. Both D1R and D2R respond to tonic and phasic dopamine.14

7.2. Frequency distribution of the dopamine receptors

The frequency of dopamine receptors differs within the brain regions:1516

Brain region D1 D2 D3 D4 D5
Striatum +++1715 +++17 15 +1517 -15 -15 / Nucleus caudatus: o17
Nucleus accumbens +++1715 +++17 15 +++15 Shell: +++l17 +15 -15 / o17
Substantia nigra +++17 ++17 +17 SN pars reticulata: +17 +17
VTA ++17 +17
Septum +15 +15 / ++17 +1517 -15 -15
Tuberculum olfactorium +++15 +++17 15 +15 / +++17 -15 -15
Amygdala +++15 +15 / ++17 +15 +1715 -15
Hippocampus +1517 +15 / ++17 +1517 +1715 +15
Cortex +15 / ++16 / PFC: +++17 +15 / -16 / ++17 +1517 / -16 +15 / ++16 -15 /+17 / +17
Entorhinal cortex +17
Premotor cortex +17
ACC +17
Dentate gyrus +17
Hypothalamus +1517 +15 +15 +1715 -15 / +17
Thalamus +1517 +15 / ++17 +15 +1715 +15
Cerebellum +1517 +15 +15 -15 -15
Islands of Calleja +++17
Globus pallidus +17
Retina ++17 ++17 ++17
Pituitary gland +++17
Smelling flask +++17

+++: frequent; ++ moderate; + low; o very low; - none observed; blank: no information

The frequency distribution of the receptors in the rat is (from frequent to rare):

  1. D1 (approx. 3 to 5 times as often as D2)
  2. D2
  3. D3 (D3 to D5 are considerably rarer than D1 and D2)
  4. D5
  5. D4
  • D1 and D2 can be found separately on D1 and D2 MSNs respectively
    • D1-MSN
      • predominantly express D2
      • approx. 50 %
      • direct route
        • projects GABAerg from striatum into inner pallidum and substantia nigra pars reticulata
        • of the inner pallidum and substantia nigra pars reticulata further GABAerg in the thalamus.
        • Result: Increase in thalamic activity (disinhibition: two inhibitory neurons connected in series).
      • enables movement and reinforcement learning
    • D2-MSN
      • predominantly express D2
      • approx. 50 %
      • indirect route
        • projects GABAerg from striatum into outer pallidum
        • from outer pallidum further GABAerg in nucleus subthalamicus
        • from nucleus subthalamicus further glutamatergic to the GABAergic neurons of the inner pallidum and the pars reticulata of the nucleus niger
      • inhibits, inhibits movement and reinforcement learning
    • Both MSN types
      • respond to dopamine release from non-synaptic varicosities
      • can receive synapse-like inputs of dopamine axons with connections between dopamine varicosities and GABAergic postsynaptic accumulations
  • D2 are also expressed on dopamine axons

Nucleus accumbens:

  • D3 frequent
  • D1
  • D2

Caudate nucleus:

  • D1
  • D2

Putamen ventral:

  • D3 moderate

Blocking dopamine receptors increases the release of acetylcholine. Acetylcholine is partly responsible for the development of extrapyramidal symptoms.18

7.3. Dopamine release from dopamine receptors

DRD1 and DRD2 release dopamine very slowly (“unbinding”). The half-life of the dopamine release of DRD1 and DRD2 is 80 seconds14 and is therefore much longer than bursts, which last only fractions of a second to a few seconds.

7.4. Dopamine receptors and DAT mostly extrasynaptic

Receptors are mostly, but not exclusively, located within synapses.
Dopamine receptors are predominantly located outside of synapses (extrasynaptic). This also applies to the D2 autoreceptor and the DAT, which is responsible for dopamine reuptake 19 2021

In the striatum, dopaminergic fibers form en passant synapses every 4 mm.22
Due to diffusion and reuptake (not degradation), the half-life of extracellular dopamine in the caudate nucleus is less than 50 ms, while it is slightly longer in the nucleus accumbens.2324 Thus, D1 receptors can be stimulated by DA that diffuses into the extrasynaptic extracellular space up to 12 micrometers away from the release sites25

Dopamine uptake in the mPFC, nucleus accumbens and caudate nucleus/putamen correlates with the number of dopamine receptors present. In the amygdala, on the other hand, dopamine uptake is lower and slower and corresponds to that of the neuroendocrine tuberoinfundibular dopamine system.24

7.5. Heteroreceptors (postsynaptic receptors)

Released catecholamines act on postsynaptic heteroreceptors (here on inhibitory as well as activating ones), as well as on presynaptic autoreceptors (here only inhibitory ones).26

7.5.1. D1-like dopamine receptors: activating

D1R-like receptors (D1R and D5R)27

  • increase adenylate cyclase
    • especially D1R
  • increase the phosphoinositide metabolism
    • especially D5R
  • are located on non-dopamine neurons28
  • stimulate neuronal signaling by binding to Gαs/olf to activate adenylyl cyclase. The enzyme adenylyl cyclase (AC) converts adenosine triphosphate (ATP) into cyclic adenosine monophosphate (cAMP). cAMP activates protein kinase A (PKA), which in turn phosphorylates the cAMP response element binding protein (CREB). CREB is translocated to the nucleus and activates CREB-dependent transcription of genes involved in synaptic plasticity. D1R increases excitability in axonal terminals by modulating various ion channels, including voltage-activated Na+, K+ and Ca2+ channels and the G-protein gated inwardly rectifying K+ channel (GIRK).32928
  • D1R-like receptors do not contain introns, unlike D2R-like receptors, which therefore recognize “long” and “short” D2 receptor isoforms.9
7.5.1.1. D1 receptor

Most common dopamine receptor in the dlPFC of primates. Mediates most cellular dopamine effects in the dlPFC.30

  • Low affinity13
  • Anti-inflammatory (neuroinflammation)13
  • Postsynaptic
  • Activating
    when dopamine binds to the D1 or D5 receptors, the subsequent synapse is activated = depolarized (excitatory postsynaptic potential)
    • Promotes the production of cAMP31
      • Stimulation of cAMP by dopamine in the striatum requires a dopamine concentration of at least 0.3 μM32
    • Increases intracellular calcium (Ca2+)31
    • Stimulates PI hydrolysis31
  • Appearance:
    • Nucleus accumbens (ventral striatum) (together with D3 receptors)333133
    • Olfactory bulb33
    • Basal ganglia33
      • Caudate nucleus34
      • Putamen34
    • Hypothalamus
    • Thalamus
    • (only) in projections (without mRNA) from striatal GABAergic cells, which also produce substance P, in
      • Entopeduncular nucleus
      • Globus pallidus
      • Substantia nigra pars reticulata
    • Lower also in the PFC33
  • Agonists:
    • (R)-SKF82526; Kd: 28 nM at DRD1; KL: 21 nM at DRD1 striatal35
    • SKF3839331; Kd: 150 nM at DRD1; KL: 381 nM at DRD1 striatal35
    • (R)-(+)-6-Br-APB; Kd: 384 nM35
    • (R)-apomorphins; Kd: 680 nM; KL: 206 nM at DRD1 striatal35
    • (S)-SKF8252631; Kd: 1818 nM at DRD1; KL: 1.1335 nM at DRD1 striatal35
    • (R)-NPA; Kd: 1816 nM at DRD1; KL: 625 nM at DRD1 striatal35
    • (+)-6,7-ADTN; Kd: 4600 nM at DRD1; KL: 734 nM at DRD1 striatal35
    • Dopamine; Kd: 2,500 nM (2.5 μM) at DRD1; KL: 580 nM at DRD1 striatal35
    • Serotonin; Kd: 9690 nM at DRD1; KL: 6,543 nM at DRD1 striatal35
    • Noradrenaline; Kd: 50,000 nM (50 μM) at DRD1; KL: 4,141 nM at DRD1 striatal35
    • Adrenaline; Kd: 55 000 nM at DRD1; KL: 980 nM at DRD1 striatal35
    • Bromocriptine
    • Fenoldopam31
    • A776369
    • SKF-812979
    • SKF-839599
  • Antagonists:
    • SCH-23390319
    • (+)Butaclamol31
    • Cis-Fluopenthixol31
    • SKF-835669
    • Ecopipam9
    • [125I]SCH239829

Involved in the formation of aversive memories.
Regulates the sustained firing of dlPFC neurons during the delay phase of delayed-response tasks that require working memory.30
Blockade of D1 receptors interfered with corticostriatal long term potentiation (LTP, “learning”), while blockade of D5 receptors prevented LTD (long term depression, “forgetting”).36
Blockade of D1 receptors increased motor activity, while blockade of D1 and D5 receptors decreased motor activity.36
In mPFC pyramidal neurons, D1 receptors on dendritic spines and D5 receptors on dendritic shafts are more prominent. Simultaneous pharmacological activation of D1 and D5 receptors in the mPFC by the D1 and D5 agonist SKF-38393 promoted the formation of aversive memories.37

After birth, the density of D1 and D2 receptors in the striatum initially increases. In adolescence, the number of these receptors drops to 40 % of the initial level.38 This decrease is again significantly greater in men than in women.
A high expression of dopamine transporters could possibly cause an increased expression of D1, D2 and VMAT2 receptors.39

Glucocorticoids cause a sensitization of D1 receptors in GABAergic cells of the striatum in rats,4041 as well as stress.4243

7.5.1.2. D5 receptor

Involved in the formation of aversive memories.
In mPFC pyramidal neurons, D1 receptors on dendritic spines and D5 receptors on dendritic shafts are more prominent. Simultaneous pharmacological activation of D1 and D5 receptors in the mPFC by the D1 and D5 agonist SKF-38393 promotes the formation of aversive memories.37

7.5.2. D2-like dopamine receptors: inhibitory

D2R-like receptors (D2R, D3R and D4R) are inhibitory. They induce by coupling to Gi/o proteins:344

  • The inhibition of AC- and PKA-dependent signaling pathways
  • The activation of inhibitory G-protein-activated inwardly rectifying potassium channels (GIRK)
  • The closing of voltage-activated Ca2+ channels.
  • The activation of phospholipase C9

The majority of D2 receptors are located on non-dopamine neurons (postsynaptic).28 For presynaptic autoreceptors, see below,

D2R-like receptors contain introns and therefore know “long” and “short” D2 receptor isoforms, unlike D1R-like receptors.9

For activation or deactivation of the subsequent synapse, a certain percentage of the activating or inhibiting (here: dopamine) receptors must be initiated by means of dopamine binding. If there is too little dopamine in the synaptic cleft due to the overactivity of the dopamine reuptake transporters, not enough receptors are initiated. As a result, the activation/deactivation of the subsequent synapse that is actually due does not take place.

The brain makes the decision to take an action up to 7 seconds before the person becomes aware of the decision itself. These 7 seconds are available to the person to suppress a decision that has already been “made” - by means of inhibitory deactivation of the synapses that transmit the decision. A person can cancel a decision that has already been made 200 milliseconds before it is executed.45
Metaphorically speaking, one area of the brain puts intended decisions “up for discussion” and gives other brain regions the opportunity to assess and allow or prevent them.
This testing and abandonment mechanism is essentially controlled by dopamine. If the dopamine control circuit is disrupted, the mechanism that leads to the abandonment of disadvantageous decisions is inhibited.

7.5.2.1. D2 receptor
  • Low affinity,13 at least in vivo just as low affinity as D11
    • No activation by basal dopamine levels (2 to 20 nM)
    • Activation at 100 μM through phasic dopamine release
  • Anti-inflammatory (neuroinflammation)13
  • Presynaptic (short) and postsynaptic (long)46
  • 2 Isoforms47
    • D2 short
      • Presynaptic48
    • D2 long
      • Postsynaptic48
  • D2 short receptors can function as autoreceptors
    • Inhibitory feedback mechanism through changes in48
      • DA synthesis
      • DA release
      • DA recovery
        in response to increasing amounts of extracellular synaptic dopamine.
    • Presynaptic D2 autoreceptors are 6 times more dopamine-affine than postsynaptic D2 receptors
    • D2 autoreceptors on dopamine axons respond to tonic and phasic dopamine4950
      • Your activation
        • Inhibits the synthesis of dopamine
        • Increases dopamine uptake
        • Regulates VMAT2 expression51
    • D2 autoreceptors in the soma
      • Activation inhibits the firing of dopamine neurons52
    • No selective D2 autoreceptor agonists or antagonists are known to date53
  • Inhibiting:
    when dopamine binds to the receptors D2, D3 or D4, the subsequent synapse is inhibited = polarized (inhibitory postsynaptic potential)
    • Inhibits adenylyl cyclase31
    • Inhibits cAMP production
      • D2 short inhibits cAMP more effectively and requires fewer agonists to do so than D2 long31
    • Enhances ATP- or calcium ionophore-induced arachidonic acid release in CHO cells31
    • Increases the intracellular calcium level in31
      • Ltk cells
        • Due to increased PI hydrolysis
      • CCL1.3 cells
        • Due to increased PI hydrolysis
      • CHO cells
        • Here, however, not through increased PI hydrolysis
  • The more dopamine receptors are present, the greater the acetylcholinergic excess that occurs when these receptors are blocked.
  • The administration of typical antipsychotics (= typical neuroleptics, e.g. haloperidol), which block the postsynaptic dopamine D2 receptors as D2 antagonists, causes pronounced acetylcholinergic side effects such as extrapyramidal symptoms or akathisia (taskinesia, restlessness) in patients with a high number of dopamine receptors. The acetylcholinergic excess in patients with a high number of dopamine receptors explains the frequent consumption of anticholinergic and sedative substances as well as the frequent use of cocaine.
  • Appearance:
    • Striatum (together with D1 receptors)33
      • Expressed by GABAergic neurons that also express enkephalins31
      • D2 are also expressed on dopamine axons
    • Olfactory bulb33
      • Expressed by GABAergic neurons that also express enkephalins31
    • Nucleus accumbens 33
      • Expressed by GABAergic neurons that also express enkephalins31
    • Substantia nigra pars compacta
      • Expressed by dopaminergic neurons31
    • Ventral tegmentum
      • Expressed by dopaminergic neurons31
    • Adrenal gland
      • Here, the D2 receptor regulates the production and release of PRL
  • Agonists
    • (R)-apomorphine; Kd: 24 nM at DRD2; KL: 127 nM at DRD2 striatal35
    • (R)-SKF82526h; Kd: 28 nM; KL: 23 nM at DRD2 striatal35
    • (R)-(+)-6-Br-APB; Kd: 384 nM35
    • (S)-SKF82526; KL: 1,000 nM at DRD2 striatal35
    • (R)-NPA; Kd: 20 nM at DRD235
    • (+)-6,7-ADTN; KL: 463 nM at DRD2 striatal35
    • Dopamine; Kd: 1,705 to 17,000 nM (2.5 μM) at DRD2; KL: 4,300 nM at DRD2 striatal35
    • SKF38393; Kd: 9,500 nM to DRD235
    • Noradrenaline; KL: 126,000 nM at DRD2 striatal35
    • Adrenaline; KL: 128,000 nM at DRD2 striatal35
    • Serotonin; KL: 183,000 at DRD2 striatal35
    • Bromocriptine31
    • Apomorphine31
    • N043754
    • Noradrenaline47
      • Noradrenaline has different affinities on D2-type receptors: D3R > D4R ≥ D2SR ≥ D2L
    • MLS15479
    • Rotigotine9
    • Ropinirole9
    • Pramipexole9
    • PD 1289079
    • PD168,0779
    • A4129979
  • Antagonists:
    • Spiperon3154
    • Racloprid31549
    • Sulpiride319
    • Haliperidol
    • Paliperidon, (RS)-3-{2-[4-(6-Fluor-1,2-benzisoxazol-3-yl)piperidino]ethyl}-9-hydroxy-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-on; 9-Hydroxy-Risperidon
    • L74162654
    • Clozapine55
      • Stronger D4 than D2 antagonist
    • Pipotiazine9
    • Perospirone9
    • ML3219
    • Prochlorperazine9
    • NGB 29049
  • Antagonist and agonist
    • Aripiprazole56
      • D2 receptor partial agonism
        • Acts as an antagonist when there is an excess of dopamine and as an agonist when there is a lack of dopamine.
        • Has an inhibitory effect against dopaminergic hyperfunction in the mesolimbic system and an activating effect against dopaminergic hypofunction in the mesocortical system. This reduces the risk of excessive D2 receptor blockade in the striatum or pituitary gland
      • Serotonin 5-HT1A receptor partial agonism
      • 5-HT2A receptor antagonism
      • Only a very weak prolactin agonist
      • Use. Schizophrenia
    • D2, D3 and D4 receptors work
      • Prolactin activating
      • Acetylcholine inhibiting
  • Poisons
    • Reduction of D2 receptors through57
      • Pesticides
      • Mercury
      • Formaldehyde

Blocking D2 auto-receptors leads to an increase in dopamine levels.58

After birth, the density of D1 and D2 receptors in the striatum initially increases. The increase in D2 receptors after birth is more pronounced in men than in women.59
In adolescence, the number of these receptors falls to 40% of the initial level.38 This decrease is again significantly greater in men than in women.
With increasing age, the density of D2 receptors in the striatum decreases.60

A high expression of dopamine transporters could possibly cause an increased expression of D1 receptors, D2 receptors and VMAT2 receptors.39

A fairly small study of children with ADHD (many of whom were born prematurely or at low weight) found evidence of lower D2/D3 receptor binding/number in ADHD-C sufferers than in sufferers of the ADHD-I subtype: ADHD-C: 2.9 (2.6 - 3.5); ADHD-I: 4.0 (3.3 - 4.5).61

D2 and D3 agonists increase cataplexy (narcolepsy symptom), D2 and D3 antagonists reduce it.62

D2 and D3 agonists do not appear to affect REM sleep.62

D2R regulates positive emotionality and extraversion.63

7.5.2.3. D3 receptor

DRD3 may be the only dopamine receptor not associated with ADHD.646566

  • High affinity13
  • Pro-inflammatory (neuroinflammation)13
  • Presynaptic and postsynaptic
  • Inhibiting:
    when dopamine binds to the receptors D2, D3 or D4, the subsequent synapse is inhibited = polarized (inhibitory postsynaptic potential)
    • Inhibits adenylyl cyclases
      • Less than D2 receptors in31
        • CHO 10001 Cells
        • 293 cells
        • NG108-15 cells
      • And not at all in
        • GH4C1 cells
        • MN9D cells
        • SK-N-MC cells
        • CHO cl cells
        • NG108-15 cells
        • CCL1.3 Cells
    • No enhancement of ATP- or calcium ionophore-induced arachidonic acid release was observed, at least in CHO cells or GH4CI cells31
    • No stimulation of PI hydrolysis31
  • Appearance
    • Predominantly in the limbic system6733
    • Nucleus accumbens
    • Olfactory bulb
    • Cerebellum
      • Since the cerebellum is not connected to other areas of the brain via dopaminergic projections (communication pathways), it is assumed that D3 receptors perform non-synaptic dopaminergic functions here
    • Islands of Calleja (a group of densely packed small cells in the cortex of the hippocampal gyrus)
    • Low in the nucleus accumbens (ventral striatum)55
  • D3 receptor agonists
    • Quinpirole31
    • 7-OH-DPAT31
    • Apormophine31
    • Pramipexole, (S)-2-amino-4,5,6,7-tetrahydro-6-(propylamino)benzothiazole; (S)-2-amino-6-(propylamino)-4,5,6,7-tetrahydrobenzothiazole9
    • Ropinirole, 4-[2-(dipropylamino)ethyl]indolin-2-one9
    • (+)-PD12890754
    • Noradrenaline47
      • Noradrenaline has different affinities on D2-type receptors: D3R > D4R ≥ D2SR ≥ D2L
    • Rotigotine9
    • PD 1289079
    • A4129979
    • [3H]PD1289079
  • Antagonists:
    • Spiperon3154
    • Racloprid31549
    • Sulpiride319
    • SB-27701154
    • Perospirone9
    • Prochlorperazine9
    • S330849
    • NGB 29049
    • SB 277011-A9
    • (+)-S-142979

D2 and D3 agonists increase cataplexy (narcolepsy symptom), D2 and D3 antagonists reduce it.62

D2 and D3 agonists do not appear to affect REM sleep.62

7.5.2.4. D4 receptor

D4 receptors are involved in the encoding of the memory of fear, but not in the encoding of the memory of rewards.37 D4Rs are involved in the regulation of action impulsivity (inhibition problems) and choice impulsivity (devaluation of distant rewards).63
In humans, primates and rodents, D4R is mainly found in the PFC, especially in neurons of the deep layer. In contrast, DRD4 mRNA expression is much lower in the striatum.63

  • Rather high affinity
  • Presynaptic and postsynaptic
  • Inhibiting:
    when dopamine binds to the receptors D2, D3 or D4, the subsequent synapse is inhibited = polarized (inhibitory postsynaptic potential)
    • Inhibits adenylyl cyclases, but only in some cell lines31
    • Enhances ATP- or calcium ionophore-induced arachidonic acid release in CHO cells31
    • No stimulation of PI hydrolysis31
    • Activating D4R in the PFC keeps the output signal of the PFC network low63
    • D4R-KO mice show hyperexcitability of frontal cortical P neurons6368
      • The functional gain by D4.7R, on the other hand, shows a decrease in cortico-striatal glutamatergic transmission69
    • D4R in frontal cortico-striatal terminals mediate significant inhibition of striatal glutamate release63
    • Rodents with neonatal 6-OH dopamine lesions show typical ADHD symptoms, including locomotor hyperactivity, with increased striatal D4R density70
  • D4Rs can indirectly modulate the function of adrenoceptors and other dopamine receptor subtypes through heteromerization63
  • Appearance:
    • Less frequently than other dopamine receptors
    • PFC
      • DRD4 also binds noradrenaline (at least in the PFC)7163 , unlike other dopamine receptors72
    • Medulla
    • Limbic regions33
      • Amygdala
      • Hypothalamus
    • Midbrain (mesencelaphon)
    • Heart
    • Retina73
    • Pinealocytes of the pineal gland74
      • These are involved in the circadian system through the release of melatonin
    • Low occurrence in the striatum5575 and the other basal ganglia
    • Frequency distribution PFC > midbrain > amygdala > striatum72
  • Variants76
    • DRD4.2R: 2 repeats (8 %)
    • DRD4.4R: 4 repeats (60 %)
    • DRD4.7R: 7 repeats (20 %)
      • Compared to DRD4.4R:63
        • Higher suppression of network bursts and NMDA receptor-mediated excitatory postsynaptic currents of P neurons in vitro
        • Stronger downregulation of NR1-NMDA receptor surface expression in frontal cortical cells in vitro
        • Attenuated methamphetamine-induced cortical activation
        • Attenuated ontogenetic and methamphetamine-induced glutamate release frontal cortico-striatal
        • Stronger inhibition of frontal cortico-striatal neurotransmission:
          • Specifically higher dopamine potency with the D2R-D4.7R heteromer than with the D2R-D4.4R heteromer, compared to the D2R homomer
          • Differential decrease or increase in the constitutive activity of D2R when it forms D2R-D4.4R or D2R-D4.7R heteromers, respectively
          • More frequent formation of D4.7R homomers instead of heteromers than with D4.4R
            • D4.7R forms heteromers with D2R less frequently than D4.4R
            • D4.7R forms homomers more frequently than D4.4.R
            • Significantly higher dopamine effect for D4.4R-D4.4R and D4.7R-D4.7R homomers than for D2R-D4.4R and D2R-D4.7R heteromers also leads to functional enhancement of D4.7R compared to D4.4R
        • Less frequent formation of D4.7R-α2AR heteromers than of D4.4R-α2AR in the brain
          • D4.7R-α2AR increases the effectiveness of noradrenaline in activating α2AR, but not D4.4R-α2AR
          • D4.7R does not allosterically inhibit α2AR-mediated signaling in the heteromer, compared to D4.4R
          • Therefore, dopamine does not inhibit α2AR signaling in α2AR-D4.7R, but does in α2AR-D4.4R heteromers
            • D4R can also be activated by endogenous noradrenaline in the cerebral cortex
            • High dopamine should cause significant inhibition of α2AR signaling by the α2AR-D4.4R, but not by the α2AR-D4.7R heteromer
            • Α2AR-D4R heteromers appear to primarily reduce the excitability of P neurons
            • Therefore higher frontal-cortical inhibition by D4.7R
    • No significant differences between D4.2R, D4.4R and D4.7R with regard to dopamine-induced activation of the five Gi/o protein subtypes63
  • Agonists
    • Apormophine31
    • Quinpirole31
    • Dopamine31
    • FAUC 17977
    • (-)-(R)-N-propylnorapomorphine54
    • L-745,87054
    • Noradrenaline47
      • Noradrenaline has different affinities on D2-type receptors: D3R > D4R ≥ D2SR ≥ D2L
      • Noradrenaline binds and activates D4Rs at submicromolar concentrations up to ten times higher than the concentration that can activate β1R or α1BR in pineal gland preparations or pineal gland tissue.63
    • Rotigotine9
    • PD168,0779
    • A4129979
  • Antagonists:
    • Spiperon3154
    • Clozapine553172
      • Stronger D4 than D2 antagonist
      • Serotonin receptor 5-HT2A antagonist67
      • Antagonist of other catecholamine receptors67
    • Sulpiride319
    • NGD 94-154
      • Selective D4 antagonist
    • Perospirone9
    • Sonepiprazole9
    • L7458709
    • A-3813939
    • L7417429
    • ML3989
    • [125I]L7506679
    • [3H]NGD9419

Selective D4 antagonists proved to be ineffective for antipsychotic treatment. Apparently, a combined treatment of the dopaminergic and serotonergic systems is required.78

Injections of the selective D4R agonist A-412997 (5 and 10 mg/kg) and the antagonist L-745870 (5 and 10 mg/kg) significantly altered the activity of the hippocampus and PFC.
The D4R agonist A-412997 enhanced the slow rhythm of the PFC (delta, 2-4 Hz) and suppressed the theta rhythm of the hippocampus.
The D4R antagonist L-745870 had the opposite effect. Analogous changes in the two slow rhythms were also found in the nucleus reuniens of the thalamus, which has connections to both forebrain structures. Slow oscillations play a key role in interregional cortical coupling; in particular, delta and theta oscillations were shown to entrain neuronal firing and modulate gamma activity in interconnected forebrain structures, with relative dominance of the hippocampal theta over the PFC. D4R activation thus appears to be able to induce an abnormal bias in the bidirectional PFC-hippocampal coupling, which can be reversed by D4R antagonists.79

D4R moderate action impulsivity and choice impulsivity (together with DAT, COMT and α2AR).63

7.6. Autoreceptors (D2, D3, D4)

The presentation of this paragraph is based on Ruskin et al.26 and Cooper et al.80

Released catecholamines act not only on postsynaptic heteroreceptors (here on inhibitory as well as activating ones), but also on presynaptic autoreceptors. Autoreceptors are always inhibitory (D2, rarely also D3 and D4).

7.6.1. Effect of dopaminergic autoreceptors

Dopaminergic autoreceptors control three things:

  • The dopaminergic firing rate
  • the synthesis of dopamine
  • the release of dopamine.

Autoreceptors are found presynaptically on many areas of dopaminergic neurons, including:

  • Soma (D2)

    • Autoreceptor stimulation is reduced:
      • dopaminergic firing rate80
      • Dopamine release81
  • Dendrites (D2)

    • Autoreceptor stimulation is reduced:
      • dopaminergic firing rate80
      • Dopamine release81
  • Terminals (D2)

    • Autoreceptor stimulation is reduced:80
      • Dopamine synthesis
      • Dopamine release
  • There are no terminal autoreceptors in PFC and ACC that influence dopamine synthesis80

  • there are terminal but no somatodendritic autoreceptors in the PFC82

The activation of D2 autoreceptors by

  • exogenous administration of agonists
    • causes a potassium conductance-mediated inhibition of neurons in the substantia nigra and the VTA83
  • electrical stimulation
    • causes endogenous dopamine release, which triggers an inhibitory postsynaptic current (IPSC).8485

The effect of autoreceptors depends on their temporal activation in relation to the action potential.
If D2 autoreceptors are activated immediately before the action potential from the nerve cell, they completely suppress the release of dopamine. The later they were activated after the action potential, the weaker the inhibition became. D2 activation 90 ms after the action potential only inhibited by just under 20 %, from around 200 ms after the action potential it no longer inhibited at all. The inhibition was fully maintained for 10 minutes and then decreased over 30 minutes5

7.6.2. Up/downregulation of dopaminergic autoreceptors

Autoreceptors are 5 to 10 times more sensitive to agonists (e.g. dopamine or apomorphine) than postsynaptic dopamine receptors.82 Therefore, autoreceptors respond faster to agonists with downregulation than postsynaptic receptors 86 87 8889

Autoreceptors are subject to significant up- and downregulation.8082
Chronic administration of D2 antagonists or prolonged dopamine depletion cause their increased sensitization (upregulation).
Chronic administration of D2 agonists causes their reduced sensitization (downregulation).

Consequently, low doses of direct-acting agonists should preferentially activate autoreceptors, resulting in reduced tonic spike formation and transmitter release and thus reduced activation of postsynaptic dopamine receptors, which then mediate motor activation.

  • Low doses of direct dopamine agonists
    • reduce spontaneous motor behavior
  • Higher doses of direct dopamine agonists
    • can also activate postsynaptic receptors directly
    • increase motor activity

From this model, the hypothesis was derived that low doses of stimulants have a calming effect in ADHD by reducing dopamine transmission.90
However, stimulants such as MPH and AMP are not direct-acting dopamine receptor agonists, but have an indirect effect. In addition, D-AMP has the same effect on postsynaptic and presynaptic receptors in the basal ganglia.89

7.6.3. Agonists and antagonists

D2 autoreceptors are only very slightly activated by tonically released extracellular dopamine. The activation appears to be mainly due to phasically released dopamine that diffuses from the synaptic cleft into the extracellular space.5 A high concentration (30-100 μM) of synaptically released dopamine binds to the D2 autoreceptor within less than 30 ms91 for around 90 ms5 and triggers its effect.

The D2 autoreceptor is also activated by noradrenaline, although its affinity for noradrenaline is weaker than for dopamine.5

There are some relatively selective autoreceptor agonists and antagonists:86

  • Selective autoreceptor agonists:
    • 3-PPP
    • EMD 23-448
  • Selective autoreceptor antagonists:
    • (+)-UH232
    • (+)-AJ76

7.6.4. Dopamine regulation through postsynaptic dopamine receptors

The regulation of dopaminergic activity is not controlled by autoreceptors in all brain regions. While the firing rate of the dopamine neurons of the substantia nigra pars compacta is regulated by somatodendritic autoreceptors, the firing rate of the globus pallidus is regulated by postsynaptic dopamine receptors of the striatum and the globus pallidus itself.
In peripheral motor neurons, presynaptic inhibition can be mediated by signals from interneurons.81

7.7. Heterodimers and homodimers

Dopamine receptors form purely dopaminergic heteromers as well as heteromers with other receptor families, e.g:

  • D1 / D2 - Heterodimers92
    • relevant for addiction, schizophrenia93
    • DRD1 activation is selectively inhibited at micromolar dopamine concentrations94
    • DRD2 is only inhibited at nanomolar dopamine concentrations94
  • D1 / D3 - Heterodimers95
    • relevant for addiction93
  • D2 / D2 homodimers96
  • D2 / D3 heteromers93
    • relevant for schizophrenia93
  • D2 / D4 heteromers63
    • in striatal terminals
    • possibly in the perisomatic region of P neurons in the striatum
    • relevant for ADHD93- -
  • D2 / D5 heteromers93
  • D4 / Alpha1A adrenoceptor - heteromers97
    • relevant for ADHD: -D4.7 / Alpha1A adrenoceptor - heteromers
    • relevant for PTSD: -D4.4 / Alpha1A adrenoceptor - heteromers
  • D1 / Adenosine A1 - Heteromers93
    • relevant for addiction93
  • D2 / adenosine A2A heterodimers appear to be partially responsible for the psychomotor and reinforcing effects of psychostimulants such as cocaine and amphetamine.98
    • Addiction, schizophrenia, Parkinson’s disease93
  • D2 / Adenosine-2A / Glutamate Metabotropic mGlu(5) - Heterotrimers in the striatum99
    • relevant for schizophrenia93
  • D2 / Cannabinoid-CB1 - Heterodimers in the striatum100
  • D2 / Cannabinoid-CB1 / Adenosine-2A - Heretotrimers101102
  • D1 / NMDA heteromer93
    • relevant for schizophrenia93
  • D2 / NMDA heteromer93
    • relevant for addiction93
  • D2 / 5HT2A heteromer93
    • relevant for schizophrenia93
  • D1 / Histamine H3 heteromer93
    • relevant for ADHD, addiction, schizophrenia93
  • D2 / Histamine H3 heteromer93
    • relevant for ADHD, addiction, schizophrenia93

7.8. High-affinity and low-affinity receptor status

A high affinity state and a low affinity state are reported for dopamine receptors (high affinity state / low affinity state).96103

The high affinity state is the functional state for both D1 and D2 receptors. Stimulants can alter the balance between the high and low affinity state by increasing the extracellular level of dopamine.104

In the high state, the D2 receptor is 50% occupied by around 10 nM dopamine.105

The D2-high receptor state in the anterior pituitary can be completely converted to the D2-low state. The conversion in brain tissue seems to depend on the presence of serotonin receptors, as in the rat striatum or in the human nucleus accumbens, where very few serotonin receptors are found.106

7.9. Dopamine - Spare receptors / receptor reserve?

Receptor reserve (spare receptors) refers to the phenomenon that an agonist elicits the maximum response by activating only a fraction of the receptor population present in the system107
Little information is available on dopamine spare receptors.103

7.10. G-protein-independent dopamine receptor activation

Dopamine receptors can also be activated by mechanisms that are independent of G proteins:3
The multifunctional adaptor protein arrestin can bind DA receptors phosphorylated by GPCR kinases (GRKs) and recruit several proteins, including

  • Act
  • GSK-3
  • MAPK
  • c-Src
  • Mdm2
  • N-ethylmaleimide-sensitive factor.
    If arrestin binds to active phosphorylated receptors, further activation of G proteins is stopped and endocytosis of the receptor is promoted.

Dopamine receptors continue to be regulated by G protein-coupled receptor kinases (GRKs).
There are seven GRKs for mammals:
D1R and D2R regulate GRK2, 3, 4, 5, 6
D3R is controlled by GRK4.

In the striatum, GRKs 2, 3, 5 and 6 are expressed with different expression levels and different cellular and subcellular distribution.108

A DA lesion with 6-hydroxydopamine led to multiple protein- and brain region-specific changes in the expression of GRKs. Reduced were109

  • in the globus pallidus:
    • reduced: GRK2, 3, 5, 6
  • caudal caudate-putamen:
    • reduced: GRK2, 3, 6
  • rostral caudate putamen:
    • reduced: GRK3
    • increased: GRK6
    • increased by subsequent L-dopa: GRK2
  • Nucleus accumbens
    • increased: GRK6
      These changes remained unchanged by subsequent L-DOPA and were reversed by the D2/D3 agonist pergolide. L-dopa downregulated GRK5.
      Subsequent L-DOPA influenced the expression of arrestin3.

7.11. Dopamine agonists and antagonists

7.11.1. Dopamine agonists

  • ADTN (2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene hydrobromide)110
  • Apomorphine54
  • FAUC 17954
  • Budipin, 1-tert-butyl-4,4-diphenylpiperidine
    • Dopamine receptor agonist
    • NMDA receptor antagonist
    • MAO inhibitor antagonist
    • Weak anticholinergic effect
  • Cabergoline, 1-[(6-allylergolin-8beta-yl)carbonyl]-1-[3-(dimethylamino)propyl]-3-ethylurea; 1[(6-allyl-8-beta-ergolinyl)carbonyl]-1-[3-(dimethylamino)propyl]-3-ethylurea, N-[3-(dimethylamino)propyl]-N-[(ethylamino)carbonyl]-6-(prop-2-enyl)-8beta-ergolin-8-carboxamide
    • Dopamine receptor agonist
    • Prolactin antagonist
  • Dihydroergocryptine, 9,10-dihydro-12-hydroxy-2-isopropyl-5 alpha-(2-methylpropyl)ergotaman-3,6,18-trione
    • Dopamine receptor agonist
  • Levodopa
    • Dopamine / Noradrenaline / Adrenaline - Prodrug
  • Carbidopa
  • Lisuride, 1,1-diethyl-3-(6-methyl-9,10-didehydroergolin-8alpha-yl)urea
    • Dopamine receptor agonist
    • Prolactin antagonist
    • Influence on growth hormone
  • Pergolide, 8beta-(methylthiomethyl)-6-propylergoline
    • Dopamine receptor agonist
  • Piribedil, 2-[4-(1,3-benzodioxol-5-ylmethyl)piperazin-1-yl]pyrimidine. Piperazidine. Piprazidine
    • Dopamine receptor agonist
    • Acetylcholine receptor antagonist
  • Pramipexole, (S)-2-amino-4,5,6,7-tetrahydro-6-(propylamino)benzothiazole. (S)-2-Amino-6-(propylamino)-4,5,6,7-tetrahydrobenzothiazole
    • D3 dopamine receptor agonist54
  • Ropinirole, 4-[2-(dipropylamino)ethyl]indolin-2-one
    • D3 dopamine receptor agonist54
  • 5,6,7,8-Tetrahydro-6-(2-propen-1-yl)-4H-thiazolo[4,5-d]azepin-2-amin Dihydrochlorid (BHT-920)
    • D2 agonist111

7.11.2. Indirect dopamine receptor agonists

Indirect dopamine receptor agonists increase the activity of the mesolimbic dopaminergic system (via various mechanisms):

  • Cocaine55
  • Amphetamine55
  • Opioids55
  • Ethanol55
  • Nicotine55
  • Adenosine antagonists
    • Caffeine
    • Theobromine

7.11.3. Dopamine antagonists

  • Paliperidon, (RS)-3-{2-[4-(6-Fluor-1,2-benzisoxazol-3-yl)piperidino]ethyl}-9-hydroxy-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-on; 9-Hydroxy-Risperidon
    • Dopamine antagonist
    • Noradrenaline antagonist
    • Adrenaline antagonist
    • Serotonin antagonist
    • Histamine antagonist
  • Adenosine
    • Dopamine inhibitors

7.11.4. Receptor binding of dopamine agonists and antagonists

The values are in Ki in nM. The lower the value, the higher the receptor binding.
Greater than 10,000 was also specified for “no commitment”.
Based on Melis et al.112 and Zhou et al.113
Differing values from different sources are separated by “;”.

Agonist D1 D2 D3 D4 D5
Dopamine 0.9 - 2,340 2.8 - 474 4 - 27 28 - 450; 11.6 (D4-2); 56.2 (D4-4); 9.8 (D4-7) < 0.9 - 261
Apomorphine 0.7 - 680 32; 0.7 - 24 26; 20 - 32 2.6; 4; 1.1 (D4-2); 4.0 (D4-4); 1.2 (D4-7) 122 - 168
ADTN 2.9 - >10,000 1 - 1,370 393
Quinpirole 1.8 0.96 3
Pramipexole 3.9 0.5 5.1
PD 128,907 931 9.7 2430
ABT-724 >10,000 >10,000 >10,000 57.5 (D4-2); 63.6 (D4-4); 46.8 (D4-7) >10,000
PIP-3EA 990 3,900 2.8
FAUC 3019 33 82 0.4
A-412997 2,848 2,095 7.9
CP 226269 1,760 6.0
SKF 38393 1 - 150 150 - 9,560 5,000 1,000 - 1,300 0.5 - 100
PD 168077 >10,000 2,820 - 3,740 2,810 8.7 - 25

The values are in Ki in nM. The lower the value, the higher the receptor binding.
Differing values from different sources are separated by “;”.

Antagonist D1 D2 D3 D4 D5
L-741,626 2.4 100 200
SB277011A 1000 10
FAUC 365 3600 0.5 340
L-745870 960 2,300 0.43
Haloperidol 27 - 203 0.6 - 1.2; 6.3 2.74 - 7.8; 6.1 2.3 - 5.1; 10 33 - 151
Racloprid 1 1.3 5070
Spiperon 99 - 350 0.06 - 0.37 0.43 - 0.71 0.05 - 4 135 - 4,500
SCH 23390 0.11 - 0.35 270 - 1,100 314 - 800 3,000 - 3,560 0.11 - 0.54
Sulpiride 20,400 - 45,000 2.5 - 7.1 8 - 206 21 - 1,000 11,000 - 77,270

  1. Liu, Goel, Kaeser (2021): Spatial and temporal scales of dopamine transmission. Nat Rev Neurosci. 2021 Jun;22(6):345-358. doi: 10.1038/s41583-021-00455-7. PMID: 33837376; PMCID: PMC8220193.

  2. Müller (2007): Dopamin und kognitive Handlungssteuerung: Flexibilität und Stabilität in einem Set-Shifting Paradigma. Dissertation.

  3. Speranza, di Porzio, Viggiano, de Donato, Volpicelli (2021): Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control. Cells. 2021 Mar 26;10(4):735. doi: 10.3390/cells10040735. PMID: 33810328; PMCID: PMC8066851. REVIEW

  4. Gatzke-Kopp, Beauchaine (2007): Central nervous system substrates of impulsivity: Implications for the development of attention-deficit/hyperactivity disorder and conduct disorder. In: Coch, Dawson, Fischer ( Eds): Human behavior, learning, and the developing brain: Atypical development. New York: Guilford Press; 2007. pp. 239–263; 245

  5. Condon AF, Robinson BG, Asad N, Dore TM, Tian L, Williams JT (2021): The residence of synaptically released dopamine on D2 autoreceptors. Cell Rep. 2021 Aug 3;36(5):109465. doi: 10.1016/j.celrep.2021.109465. PMID: 34348146; PMCID: PMC8351352.

  6. Edel, Vollmoeller (2006): ADHS bei Erwachsenen, Seite 112

  7. Araki, Sims, Bhide (2007): Dopamine receptor mRNA and protein expression in the mouse corpus striatum and cerebral cortex during pre- and postnatal development. Brain Res. 2007 Jul 2;1156:31-45. doi: 10.1016/j.brainres.2007.04.043. PMID: 17509542; PMCID: PMC1994791.

  8. Perreault, Hasbi, O’Dowd, George (2014): Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance. Neuropsychopharmacology. 2014 Jan;39(1):156-68. doi: 10.1038/npp.2013.148. PMID: 23774533; PMCID: PMC3857642.

  9. Myslivecek (2022): Dopamine and Dopamine-Related Ligands Can Bind Not Only to Dopamine Receptors. Life (Basel). 2022 Apr 19;12(5):606. doi: 10.3390/life12050606. PMID: 35629274; PMCID: PMC9147915. REVIEW

  10. Giertler (2003): Die Rolle des Nucleus accumbens bei der Akquisition und Expression von instrumentellem Verhalten der Ratte, Dissertation

  11. Bonaventura, Quiroz, Cai, Rubinstein, Tanda, Ferré (2017): Key role of the dopamine D4 receptor in the modulation of corticostriatal glutamatergic neurotransmission. Sci Adv. 2017 Jan 11;3(1):e1601631. doi: 10.1126/sciadv.1601631. eCollection 2017 Jan.

  12. Pharmawiki: Dissipziationskonstante

  13. Broome, Louangaphay, Keay, Leggio, Musumeci, Castorina (2020): Dopamine: an immune transmitter. Neural Regen Res. 2020 Dec;15(12):2173-2185. doi: 10.4103/1673-5374.284976. PMID: 32594028; PMCID: PMC7749467. REVIEW

  14. Hunger L, Kumar A, Schmidt R (2020): Abundance Compensates Kinetics: Similar Effect of Dopamine Signals on D1 and D2 Receptor Populations. J Neurosci. 2020 Apr 1;40(14):2868-2881. doi: 10.1523/JNEUROSCI.1951-19.2019. Epub 2020 Feb 18. PMID: 32071139; PMCID: PMC7117896.

  15. Meador-Woodruff JH (1994): Update on dopamine receptors. Ann Clin Psychiatry. 1994 Jun;6(2):79-90. doi: 10.3109/10401239409148986. PMID: 7804392.

  16. Meador-Woodruff, Damask, Wang, Haroutunian, Davis, Watson (1996): Dopamine receptor mRNA expression in human striatum and neocortex. Neuropsychopharmacology. 1996 Jul;15(1):17-29. doi: 10.1016/0893-133X(95)00150-C. PMID: 8797188.

  17. Beaulieu JM, Gainetdinov RR (2011): The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011 Mar;63(1):182-217. doi: 10.1124/pr.110.002642. PMID: 21303898. REVIEW

  18. Stahl (2000): Essential Psychopharmacology, Neuroscientific Basis and Practical Applications. Second Edition, Cambridge University Press; zitiert nach Franck (2003): Hyperaktivität und Schizophrenie – eine explorative Studie; Dissertation, Seite 66

  19. Pereira, Sulzer (2012): Mechanisms of dopamine quantal size regulation. Front Biosci (Landmark Ed). 2012 Jun 1;17(7):2740-67. doi: 10.2741/4083. PMID: 22652810. REVIEW

  20. Yung KK, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI (1995): Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience. 1995 Apr;65(3):709-30. doi: 10.1016/0306-4522(94)00536-e. PMID: 7609871.

  21. Cragg SJ, Rice ME (2004): DAncing past the DAT at a DA synapse. Trends Neurosci. 2004 May;27(5):270-7. doi: 10.1016/j.tins.2004.03.011. PMID: 15111009.

  22. In der von Seamans JK, Yang CR (2004): The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol. 2004 Sep;74(1):1-58. doi: 10.1016/j.pneurobio.2004.05.006. Erratum in: Prog Neurobiol. 2004 Dec;74(5):321. PMID: 15381316., REVIEW, angegebenen Quelle,Pickel VM, Beckley SC, Joh TH, Reis DJ (1981): Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum. Brain Res. 1981 Nov 30;225(2):373-85. doi: 10.1016/0006-8993(81)90843-x. PMID: 6118197., nicht verifizierbar.

  23. Wightman RM, Zimmerman JB (1990): Control of dopamine extracellular concentration in rat striatum by impulse flow and uptake. Brain Res Brain Res Rev. 1990 May-Aug;15(2):135-44. doi: 10.1016/0165-0173(90)90015-g. PMID: 2282449. REVIEW

  24. Garris PA, Wightman RM (1994): Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study. J Neurosci. 1994 Jan;14(1):442-50. doi: 10.1523/JNEUROSCI.14-01-00442.1994. PMID: 8283249; PMCID: PMC6576851.

  25. Gonon F (1997): Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J Neurosci. 1997 Aug 1;17(15):5972-8. doi: 10.1523/JNEUROSCI.17-15-05972.1997. PMID: 9221793; PMCID: PMC6573191.

  26. Ruskin DN, Bergstrom DA, Shenker A, Freeman LE, Baek D, Walters JR (2001): Drugs used in the treatment of attention-deficit/hyperactivity disorder affect postsynaptic firing rate and oscillation without preferential dopamine autoreceptor action. Biol Psychiatry. 2001 Feb 15;49(4):340-50. doi: 10.1016/s0006-3223(00)00987-2. PMID: 11239905.

  27. Undieh (2010): Pharmacology of signaling induced by dopamine D(1)-like receptor activation. Pharmacol Ther. 2010 Oct;128(1):37-60. doi: 10.1016/j.pharmthera.2010.05.003. PMID: 20547182; PMCID: PMC2939266.

  28. Ford CP (2014): The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience. 2014 Dec 12;282:13-22. doi: 10.1016/j.neuroscience.2014.01.025. PMID: 24463000; PMCID: PMC4108583. REVIEW

  29. Gurevich, Gainetdinov, Gurevich (2016): G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacol Res. 2016 Sep;111:1-16. doi: 10.1016/j.phrs.2016.05.010. PMID: 27178731; PMCID: PMC5079267.

  30. Levy F (2009): Dopamine vs noradrenaline: inverted-U effects and ADHD theories. Aust N Z J Psychiatry. 2009 Feb;43(2):101-8. doi: 10.1080/00048670802607238. PMID: 19153917. REVIEW

  31. Jaber, Robinson, Missale, Caron (1996): Dopamine receptors and brain function; Neuropharmacology; Volume 35, Issue 11, 1996, Pages 1503-1519; https://doi.org/10.1016/S0028-3908(96)00100-1

  32. Gonon F, Burie JB, Jaber M, Benoit-Marand M, Dumartin B, Bloch B (2000): Geometry and kinetics of dopaminergic transmission in the rat striatum and in mice lacking the dopamine transporter. Prog Brain Res. 2000;125:291-302. doi: 10.1016/S0079-6123(00)25018-8. PMID: 11098665.

  33. Stuckenholz (2013): Die Effekte des α7-nikotinergen Acetylcholin-Agonisten PNU-282987 und des nikotinergen Acetylcholin-Antagonisten Mecamylamin auf Neuroinflammation und Neurodegeneration im akuten MPTP-Mausmodell des Morbus Parkinson, Dissertation

  34. Dorsch: Lexikon der Psychologie

  35. Brusniak MY, Pearlman RS, Neve KA, Wilcox RE (1996): Comparative molecular field analysis-based prediction of drug affinities at recombinant D1A dopamine receptors. J Med Chem. 1996 Feb 16;39(4):850-9. doi: 10.1021/jm950447w. PMID: 8632409.

  36. Centonze, Grande, Saulle, Martin, Gubellini, Pavón, Pisani, Bernardi, Moratalla, Calabresi (2003): Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J Neurosci. 2003 Sep 17;23(24):8506-12. doi: 10.1523/JNEUROSCI.23-24-08506.2003. PMID: 13679419; PMCID: PMC6740372.

  37. Weele, Siciliano, Tye (2018): Dopamine tunes prefrontal outputs to orchestrate aversive processing. Brain Res. 2018 Dec 1. pii: S0006-8993(18)30610-3. doi: 10.1016/j.brainres.2018.11.044. Seite 31

  38. Franck (2003): Hyperaktivität und Schizophrenie – eine explorative Studie; Dissertation, unter Verweis auf Seeman 1987

  39. Reinel (2015): Multidisziplinäre Untersuchung dopaminerger Mechanismen der repetitiven Störungen anhand von zwei Rattenmodellen dopaminerger Dysregulation, Dissertation

  40. Schoffelmeer, De Vries, Vanderschuren, Tjon, Nestby, Wardeh, Mulder (1997): Intermittent morphine administration induces a long-lasting synergistic effect of corticosterone on dopamine D1 receptor functioning in rat striatal GABA neurons. Synapse. 1997 Apr;25(4):381-8. doi: 10.1002/(SICI)1098-2396(199704)25:4<381::AID-SYN9>3.0.CO;2-6. PMID: 9097397.

  41. Schoffelmeer, De Vries, Vanderschuren, Tjon, Nestby, Wardeh, Mulder (1995): Glucocorticoid receptor activation potentiates the morphine-induced adaptive increase in dopamine D-1 receptor efficacy in gamma-aminobutyric acid neurons of rat striatum/nucleus accumbens. J Pharmacol Exp Ther. 1995 Sep;274(3):1154-60. PMID: 7562482.

  42. Gariépy, Gendreau, Cairns, Lewis (1998): D1 dopamine receptors and the reversal of isolation-induced behaviors in mice. Behav Brain Res. 1998 Sep;95(1):103-11. doi: 10.1016/s0166-4328(97)00215-5. PMID: 9754882.

  43. Gariépy, Gendreau, Mailman, Tancer, Lewis (1995): Rearing conditions alter social reactivity and D1 dopamine receptors in high- and low-aggressive mice. Pharmacol Biochem Behav. 1995 Aug;51(4):767-73. doi: 10.1016/0091-3057(95)00028-u. PMID: 7675857.

  44. Missale, Nash, Robinson, Jaber, Caron (1998): Dopamine receptors: from structure to function. Physiol Rev. 1998 Jan;78(1):189-225. doi: 10.1152/physrev.1998.78.1.189. PMID: 9457173. REVIEW

  45. Interview mit John-Dylan Haynes in Technologie Report Heft 04 2016, Seite 46

  46. Khan, Mrzljak, Gutierrez, de la Calle, Goldman-Rakic (1998): Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7731-6. doi: 10.1073/pnas.95.13.7731. PMID: 9636219; PMCID: PMC22740.

  47. Sánchez-Soto, Bonifazi, Cai, Ellenberger, Newman, Ferré, Yano (2016): Evidence for Noncanonical Neurotransmitter Activation: Norepinephrine as a Dopamine D2-Like Receptor Agonist. Mol Pharmacol. 2016 Apr;89(4):457-66. doi: 10.1124/mol.115.101808.

  48. Lee, Pei, Moszczynska, Vukusic, Fletcher, Liu (2007): Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. EMBO J. 2007;26(8):2127–2136. doi:10.1038/sj.emboj.7601656

  49. Marcott, Gong, Donthamsetti, Grinnell, Nelson, Newman, Birnbaumer, Martemyanov, Javitch, Ford (2018): Regional Heterogeneity of D2-Receptor Signaling in the Dorsal Striatum and Nucleus Accumbens. Neuron. 2018 May 2;98(3):575-587.e4. doi: 10.1016/j.neuron.2018.03.038. PMID: 29656874; PMCID: PMC6048973.

  50. Marcott, Mamaligas, Ford (2014): Phasic dopamine release drives rapid activation of striatal D2-receptors. Neuron. 2014 Oct 1;84(1):164-176. doi: 10.1016/j.neuron.2014.08.058. PMID: 25242218; PMCID: PMC4325987.

  51. Sulzer, Cragg, Rice (2016): Striatal dopamine neurotransmission: regulation of release and uptake. Basal Ganglia. 2016 Aug;6(3):123-148. doi: 10.1016/j.baga.2016.02.001. PMID: 27141430; PMCID: PMC4850498.

  52. Beckstead, Grandy, Wickman, Williams (2004): Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurons. Neuron. 2004 Jun 24;42(6):939-46. doi: 10.1016/j.neuron.2004.05.019. PMID: 15207238.

  53. Drukarch B, Stoof JC (1990): D-2 dopamine autoreceptor selective drugs: do they really exist? Life Sci. 1990;47(5):361-76. doi: 10.1016/0024-3205(90)90293-z. PMID: 1975636. REVIEW

  54. Frank (2005): Synthese von dualen NMDA-Rezeptor-/Dopamin-Rezeptor-Liganden, Dissertation, Seite 31

  55. Frank (2005): Synthese von dualen NMDA-Rezeptor-/Dopamin-Rezeptor-Liganden, Dissertation, Seite 33

  56. DAZ 2005, Nr. 50, S. 34, 11.12.2005

  57. Wolf, Calabrese (2020): Stressmedizin & Stresspsychologie; Seite 302

  58. Böhm (2020): Dopaminerge Systeme, in: Freissmuth, Offermanns, Böhm (Herausgeber): Pharmakologie und Toxikologie. Von den molekularen Grundlagen zur Pharmakotherapie.

  59. Franck (2003): Hyperaktivität und Schizophrenie – eine explorative Studie; Dissertation, unter Verweis auf Anderson und Teicher, 2000

  60. Rinne, Hietala, Ruotsalainen, Säkö, Laihinen, Någren, Lehikoinen, Oikonen, Syvälahti (1993): Decrease in human striatal dopamine D2 receptor density with age: a PET study with [11C]raclopride. J Cereb Blood Flow Metab. 1993 Mar;13(2):310-4. doi: 10.1038/jcbfm.1993.39. PMID: 8436624.

  61. Rosa-Neto, Lou, Cumming, Pryds, Karrebaek, Lunding, Gjedde (2005): Methylphenidate-evoked changes in striatal dopamine correlate with inattention and impulsivity in adolescents with attention deficit hyperactivity disorder. Neuroimage. 2005 Apr 15;25(3):868-76. doi: 10.1016/j.neuroimage.2004.11.031. PMID: 15808987. n = 9

  62. Nishino, Sakai (2016): Modulations of Ventral Tegmental Area (VTA) Dopaminergic Neurons by Hypocretins/Orexins: Implications in Vigilance and Behavioral Control In: Monti, Pandi-Perumal, Chokroverty (Herausgeber) (2016): Dopamine and Sleep: Molecular, Functional, and Clinical Aspects, 65-90, 74

  63. Ferré S, Belcher AM, Bonaventura J, Quiroz C, Sánchez-Soto M, Casadó-Anguera V, Cai NS, Moreno E, Boateng CA, Keck TM, Florán B, Earley CJ, Ciruela F, Casadó V, Rubinstein M, Volkow ND (2022): Functional and pharmacological role of the dopamine D4 receptor and its polymorphic variants. Front Endocrinol (Lausanne). 2022 Sep 30;13:1014678. doi: 10.3389/fendo.2022.1014678. PMID: 36267569; PMCID: PMC9578002. REVIEW

  64. Genro JP, Kieling C, Rohde LA, Hutz MH (2010): Attention-deficit/hyperactivity disorder and the dopaminergic hypotheses. Expert Rev Neurother. 2010 Apr;10(4):587-601. doi: 10.1586/ern.10.17. PMID: 20367210.

  65. Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005 Jun 1;57(11):1313-23. doi: 10.1016/j.biopsych.2004.11.024. PMID: 15950004. REVIEW

  66. Koevoet D, Deschamps PKH, Kenemans JL (2023): Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: A comparison to attention-deficit hyperactivity disorder. Front Neurosci. 2023 Jan 6;16:1078586. doi: 10.3389/fnins.2022.1078586. PMID: 36685234; PMCID: PMC9853424. REVIEW

  67. Frank (2005): Synthese von dualen NMDA-Rezeptor-/Dopamin-Rezeptor-Liganden, Dissertation, Seite 34

  68. Rubinstein M, Cepeda C, Hurst RS, Flores-Hernandez J, Ariano MA, Falzone TL, Kozell LB, Meshul CK, Bunzow JR, Low MJ, Levine MS, Grandy DK (2001): Dopamine D4 receptor-deficient mice display cortical hyperexcitability. J Neurosci. 2001 Jun 1;21(11):3756-63. doi: 10.1523/JNEUROSCI.21-11-03756.2001. PMID: 11356863; PMCID: PMC6762699.

  69. Bonaventura J, Quiroz C, Cai NS, Rubinstein M, Tanda G, Ferré S (2017): Key role of the dopamine D4 receptor in the modulation of corticostriatal glutamatergic neurotransmission. Sci Adv. 2017 Jan 11;3(1):e1601631. doi: 10.1126/sciadv.1601631. PMID: 28097219; PMCID: PMC5226642.

  70. Avale ME, Falzone TL, Gelman DM, Low MJ, Grandy DK, Rubinstein M (2004); The dopamine D4 receptor is essential for hyperactivity and impaired behavioral inhibition in a mouse model of attention deficit/hyperactivity disorder. Mol Psychiatry. 2004 Jul;9(7):718-26. doi: 10.1038/sj.mp.4001474. PMID: 14699433.

  71. Roessner, Rothenberger (2020): Neurochemie, S. 94, in Steinhausen, Rothenberger, Döpfner (Herausgeber): Handbuch ADHS; Grundlagen, Klinik, Therapie und Verlauf der Aufmerksamkeitsdefizit-Hyperaktivitätsstörung, Kohlhammer

  72. Iversen L, Iversen F, Bloom S, Roth R (2009): Introduction to Neuropsychopharmacology, S. 205

  73. Klitten LL, Rath MF, Coon SL, Kim JS, Klein DC, Møller M (2008): Localization and regulation of dopamine receptor D4 expression in the adult and developing rat retina. Exp Eye Res. 2008 Nov;87(5):471-7. doi: 10.1016/j.exer.2008.08.004. PMID: 18778704; PMCID: PMC2597030.

  74. Kim JS, Bailey MJ, Weller JL, Sugden D, Rath MF, Møller M, Klein DC (2010): Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4). Mol Cell Endocrinol. 2010 Jan 15;314(1):128-35. doi: 10.1016/j.mce.2009.05.013. PMID: 19482058; PMCID: PMC2783391.

  75. Ferré S, Belcher AM, Bonaventura J, Quiroz C, Sánchez-Soto M, Casadó-Anguera V, Cai NS, Moreno E, Boateng CA, Keck TM, Florán B, Earley CJ, Ciruela F, Casadó V, Rubinstein M, Volkow ND (2022): Functional and pharmacological role of the dopamine D4 receptor and its polymorphic variants. Front Endocrinol (Lausanne). 2022 Sep 30;13:1014678. doi: 10.3389/fendo.2022.1014678. PMID: 36267569; PMCID: PMC9578002.

  76. Chang FM, Kidd JR, Livak KJ, Pakstis AJ, Kidd KK (1996): The world-wide distribution of allele frequencies at the human dopamine D4 receptor locus. Hum Genet. 1996 Jul;98(1):91-101. doi: 10.1007/s004390050166. PMID: 8682515.

  77. Einsiedel, Hübner, Gmeiner (2001): Benzamide bioisosteres incorporating dihydroheteroazole substructures: EPC synthesis and SAR leading to a selective dopamine D4 receptor partial agonist (FAUC 179), Bioorganic & Medicinal Chemistry Letters, Volume 11, Issue 18, 17 September 2001, Pages 2533-2536 https://doi.org/10.1016/S0960-894X(01)00484-XII

  78. Raviña, Casariego, Masaguer, Fontenla, Montenegro, Rivas, Loza, Enguix, Villazon, Cadavid, Demontis (2000): Conformationally Constrained Butyrophenones with Affinity for Dopamine (D1, D2, D4) and Serotonin (5-HT2A, 5-HT2B, 5-HT2C) Receptors: Synthesis of Aminomethylbenzo[b]furanones and Their Evaluation as Antipsychotics; Journal of Medicinal Chemistry 2000 43 (24), 4678-4693; DOI: 10.1021/jm0009890

  79. Thörn CW, Kafetzopoulos V, Kocsis B (2022): Differential Effect of Dopamine D4 Receptor Activation on Low-Frequency Oscillations in the Prefrontal Cortex and Hippocampus May Bias the Bidirectional Prefrontal-Hippocampal Coupling. Int J Mol Sci. 2022 Oct 3;23(19):11705. doi: 10.3390/ijms231911705. PMID: 36233007; PMCID: PMC9569525.

  80. Cooper, Bloom, Roth (2003): The biochemical Basis of Neuropharmacology, 8. Edition, S. 243

  81. Schmidt RF; Thews G (2013): Physiologie des Menschen

  82. Riederer P, Laux G, Pöldinger E (2013) Neuro-Psychopharmaka - Ein Therapie-Handbuch: Band 4: Neuroleptika; S. 68

  83. Lacey MG, Mercuri NB, North RA (1987): Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. J Physiol. 1987 Nov;392:397-416. doi: 10.1113/jphysiol.1987.sp016787. PMID: 2451725; PMCID: PMC1192311.

  84. Beckstead MJ, Grandy DK, Wickman K, Williams JT (2004): Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurons. Neuron. 2004 Jun 24;42(6):939-46. doi: 10.1016/j.neuron.2004.05.019. PMID: 15207238.

  85. Gantz SC, Bunzow JR, Williams JT. (2013): Spontaneous inhibitory synaptic currents mediated by a G protein-coupled receptor. Neuron. 2013 Jun 5;78(5):807-12. doi: 10.1016/j.neuron.2013.04.013. PMID: 23764286; PMCID: PMC3697754.

  86. Cooper, Bloom, Roth (2003): The biochemical Basis of Neuropharmacology, 8. Edition, S. 244

  87. Skirboll LR, Grace AA, Bunney BS (1979): Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists. Science. 1979 Oct 5;206(4414):80-2. doi: 10.1126/science.482929. PMID: 482929.

  88. Carlson JH, Bergstrom DA, Walters JR (1987): Stimulation of both D1 and D2 dopamine receptors appears necessary for full expression of postsynaptic effects of dopamine agonists: a neurophysiological study. Brain Res. 1987 Jan 6;400(2):205-18. doi: 10.1016/0006-8993(87)90619-6. PMID: 2880637.

  89. Piercey MF, Hyslop DK, Hoffmann WE (1996): Excitation of type II caudate neurons by systemic administration of dopamine agonists. Brain Res. 1996 Jan 15;706(2):249-58. doi: 10.1016/0006-8993(95)01151-x. PMID: 8822364.

  90. Seeman P, Madras BK (1998): Anti-hyperactivity medication: methylphenidate and amphetamine. Mol Psychiatry. 1998 Sep;3(5):386-96. doi: 10.1038/sj.mp.4000421. PMID: 9774771. REVIEW

  91. Ford CP, Phillips PE, Williams JT (2009): The time course of dopamine transmission in the ventral tegmental area. J Neurosci. 2009 Oct 21;29(42):13344-52. doi: 10.1523/JNEUROSCI.3546-09.2009. PMID: 19846722; PMCID: PMC2791792.

  92. Rashid, So, Kong, Furtak, El-Ghundi, Cheng, O’Dowd, George (2007): D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):654-9. doi: 10.1073/pnas.0604049104. PMID: 17194762; PMCID: PMC1766439.

  93. Perreault ML, Hasbi A, O’Dowd BF, George SR (2014): Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance. Neuropsychopharmacology. 2014 Jan;39(1):156-68. doi: 10.1038/npp.2013.148. PMID: 23774533; PMCID: PMC3857642.

  94. Kim H, Nam MH, Jeong S, Lee H, Oh SJ, Kim J, Choi N, Seong J (2022): Visualization of differential GPCR crosstalk in DRD1-DRD2 heterodimer upon different dopamine levels. Prog Neurobiol. 2022 Jun;213:102266. doi: 10.1016/j.pneurobio.2022.102266. Epub 2022 Mar 29. PMID: 35364139.

  95. Marcellino, Ferré, Casadó, Cortés, Le Foll, Mazzola, Drago, Saur, Stark, Soriano, Barnes, Goldberg, Lluis, Fuxe, Franco (2008): Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J Biol Chem. 2008 Sep 19;283(38):26016-25. doi: 10.1074/jbc.M710349200. PMID: 18644790; PMCID: PMC2533781. REVIEW

  96. Durdagi S, Salmas RE, Stein M, Yurtsever M, Seeman P (2016): Binding Interactions of Dopamine and Apomorphine in D2High and D2Low States of Human Dopamine D2 Receptor Using Computational and Experimental Techniques. ACS Chem Neurosci. 2016 Feb 17;7(2):185-95. doi: 10.1021/acschemneuro.5b00271. PMID: 26645629.

  97. Homar-Ruano P, Cai NS, Casadó-Anguera V, Casadó V, Ferré S, Moreno E, Canela EI (2023): Significant Functional Differences Between Dopamine D4 Receptor Polymorphic Variants Upon Heteromerization with α1A Adrenoreceptors. Mol Neurobiol. 2023 Jul 18. doi: 10.1007/s12035-023-03476-8. PMID: 37464153.

  98. Ballesteros-Yáñez, Castillo, Merighi, Gessi (2016): The Role of Adenosine Receptors in Psychostimulant Addiction. Front Pharmacol. 2018 Jan 10;8:985. doi: 10.3389/fphar.2017.00985. PMID: 29375384; PMCID: PMC5767594.

  99. Ferré, Agnati, Ciruela, Lluis, Woods, Fuxe, Franco (2007): Neurotransmitter receptor heteromers and their integrative role in ‘local modules’: the striatal spine module. Brain Res Rev. 2007 Aug;55(1):55-67. doi: 10.1016/j.brainresrev.2007.01.007. PMID: 17408563; PMCID: PMC2039920. REVIEW

  100. Marcellino, Carriba, Filip, Borgkvist, Frankowska, Bellido, Tanganelli, Müller, Fisone, Lluis, Agnati, Franco, Fuxe (2008): Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. Neuropharmacology. 2008 Apr;54(5):815-23. doi: 10.1016/j.neuropharm.2007.12.011. PMID: 18262573.

  101. Carriba, Navarro, Ciruela, Ferré, Casadó, Agnati, Cortés, Mallol, Fuxe, Canela, Lluís, Franco (2008): Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods. 2008 Aug;5(8):727-33. doi: 10.1038/nmeth.1229. PMID: 18587404.

  102. Ferré, Goldberg, Lluis, Franco (2008): Looking for the role of cannabinoid receptor heteromers in striatal function. Neuropharmacology. 2009;56 Suppl 1(Suppl 1):226-34. doi: 10.1016/j.neuropharm.2008.06.076. PMID: 18691604; PMCID: PMC2635338. REVIEW

  103. Seeman P, Madras BK (1998): Anti-hyperactivity medication: methylphenidate and amphetamine. Mol Psychiatry. 1998 Sep;3(5):386-96. doi: 10.1038/sj.mp.4000421. PMID: 9774771. REVIEW

  104. Seeman P (2007): Antiparkinson therapeutic potencies correlate with their affinities at dopamine D2(High) receptors. Synapse. 2007 Dec;61(12):1013-8. doi: 10.1002/syn.20453. PMID: 17853435.

  105. George SR, Watanabe M, Di Paolo T, Falardeau P, Labrie F, Seeman P (1985): The functional state of the dopamine receptor in the anterior pituitary is in the high affinity form. Endocrinology. 1985 Aug;117(2):690-7. doi: 10.1210/endo-117-2-690. PMID: 4017954.

  106. George SR, Watanabe M, Di Paolo T, Falardeau P, Labrie F, Seeman P. (1985):The functional state of the dopamine receptor in the anterior pituitary is in the high affinity form. Endocrinology. 1985 Aug;117(2):690-7. doi: 10.1210/endo-117-2-690. PMID: 4017954.

  107. Paul B, Sribhashyam S, Majumdar S (2023): Opioid signaling and design of analgesics. Prog Mol Biol Transl Sci. 2023;195:153-176. doi: 10.1016/bs.pmbts.2022.06.017. Epub 2022 Aug 5. PMID: 36707153; PMCID: PMC10325139. REVIEW

  108. Yang (2021): Functional Selectivity of Dopamine D1 Receptor Signaling: Retrospect and Prospect. Int J Mol Sci. 2021 Nov 3;22(21):11914. doi: 10.3390/ijms222111914. PMID: 34769344; PMCID: PMC8584964. REVIEW

  109. Ahmed MR, Bychkov E, Gurevich VV, Benovic JL, Gurevich EV (2008): Altered expression and subcellular distribution of GRK subtypes in the dopamine-depleted rat basal ganglia is not normalized by l-DOPA treatment. J Neurochem. 2008 Mar;104(6):1622-36. doi: 10.1111/j.1471-4159.2007.05104.x. PMID: 17996024; PMCID: PMC2628845.

  110. McCarthy CS, Megaw P, Devadas M, Morgan IG (2007): Dopaminergic agents affect the ability of brief periods of normal vision to prevent form-deprivation myopia. Exp Eye Res. 2007 Jan;84(1):100-7. doi: 10.1016/j.exer.2006.09.018. PMID: 17094962.

  111. Prasad, de Vries, Elsinga, Dierckx, van Waarde (2021): Allosteric Interactions between Adenosine A2A and Dopamine D2 Receptors in Heteromeric Complexes: Biochemical and Pharmacological Characteristics, and Opportunities for PET Imaging. Int J Mol Sci. 2021 Feb 9;22(4):1719. doi: 10.3390/ijms22041719. PMID: 33572077; PMCID: PMC7915359. REVIEW

  112. Melis, Sanna, Argiolas (2022): Dopamine, Erectile Function and Male Sexual Behavior from the Past to the Present: A Review. Brain Sci. 2022 Jun 24;12(7):826. doi: 10.3390/brainsci12070826. PMID: 35884633; PMCID: PMC9312911. REVIEW

  113. Zhou X, Pardue MT, Iuvone PM, Qu J (2017): Dopamine signaling and myopia development: What are the key challenges. Prog Retin Eye Res. 2017 Nov;61:60-71. doi: 10.1016/j.preteyeres.2017.06.003. PMID: 28602573; PMCID: PMC5653403.

Diese Seite wurde am 23.02.2024 zuletzt aktualisiert.